Abstract

In this paper, we propose a novel profilometry scheme to acquire high quality depth, where only a single shot of a monochromatic pattern is utilized. We design a band-wise pattern consisting of fringe bands spatially modulated with coprime periods. After that, with the designed pattern, depth is obtained in a hybrid manner, where both phase-based profilometry and active stereo are incorporated. To be specific, pixels in smooth regions obtain their depth values through phases analysis. Especially, based on depth smooth property, we propose a novel phase unwrapping algorithm, which avoids the problem of error propagation and yields accurate unwrapping phases. On the other hand, for boundary regions, spatial stereo, which is more robust to depth discontinuities, is utilized to modify incorrect depth values. Both theoretical verification and experimental results demonstrate that the proposed scheme can generate high quality depth maps, even for complex scenes and isolated objects.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry

Jiaming Qian, Tianyang Tao, Shijie Feng, Qian Chen, and Chao Zuo
Opt. Express 27(3) 2713-2731 (2019)

Multi-anchor spatial phase unwrapping for fringe projection profilometry

Sen Xiang, You Yang, Huiping Deng, Jin Wu, and Li Yu
Opt. Express 27(23) 33488-33503 (2019)

High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system

Wei Yin, Shijie Feng, Tianyang Tao, Lei Huang, Maciej Trusiak, Qian Chen, and Chao Zuo
Opt. Express 27(3) 2411-2431 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Smolic, “3d video and free viewpoint video from capture to display,” Pattern Recogn. 44, 1958–1968 (2011).
    [Crossref]
  2. Y. Yang, X. Wang, Q. Liu, M. Xu, and L. Yu, “A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction,” Inform. Sci. 320, 306–319 (2015).
    [Crossref]
  3. Y. Yang, H. Deng, J. Wu, and L. Yu, “Depth map reconstruction and rectification through coding parameters for mobile 3d video system,” Neurocomputing 151, 663–673 (2015).
    [Crossref]
  4. H. Deng, J. Wu, L. Zhu, Z. Yan, and L. Yu, “Texture edge-guided depth recovery for structured light-based depth sensor,” Multimed. Tools Appl. 76(3), 4211–4226 (2017).
    [Crossref]
  5. S. Naveen and R. S. Moni, “A robust novel method for face recognition from 2d depth images using DWT and DFT score fusion,” in Proceedings of International Conference on Computational Systems and Communications (IEEE, 2015), pp. 1–6.
  6. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
    [Crossref]
  7. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser Eng. 48(2), 133–140 (2010).
    [Crossref]
  8. P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
    [Crossref] [PubMed]
  9. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22(24), 3977–3982 (1983).
    [Crossref] [PubMed]
  10. Z. Zhang and J. Zhong, “Applicability analysis of wavelet-transform profilometry,” Opt. Express 21(16), 18777–18796 (2013).
    [Crossref] [PubMed]
  11. S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45(12), 123601 (2006).
    [Crossref]
  12. J. L. Flores, J. A. Ferrari, G. G. Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Optics 54(30), 8827–8834 (2015).
    [Crossref]
  13. C. Guan, L. Hassebrook, and D. Lau, “Composite structured light pattern for three-dimensional video,” Opt. Express 11(5), 406–417 (2003).
    [Crossref] [PubMed]
  14. Y. Gong and S. Zhang, “Ultrafast 3-d shape measurement with an off-the-shelf dlp projector,” Opt. Express 18(19), 19743–19754 (2010).
    [Crossref] [PubMed]
  15. K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
    [Crossref] [PubMed]
  16. C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
    [Crossref] [PubMed]
  17. C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
    [Crossref]
  18. E. Li, X. Peng, J. Xi, J. Chicharo, J. Yao, and D. Zhang, “Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3d profilometry,” Opt. Express 13(5), 1561–1569 (2005).
    [Crossref] [PubMed]
  19. W.-H. Su and H. Liu, “Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities,” Opt. Express 14(20), 9178–9187 (2006).
    [Crossref] [PubMed]
  20. Y. Ding, J. Xi, Y. Yu, and J. Chicharo, “Recovering the absolute phase maps of two fringe patterns with selected frequencies,” Opt. Lett. 36(13), 2518–2520 (2011).
    [Crossref] [PubMed]
  21. Y. Ding, J. Xi, Y. Yu, W. Cheng, S. Wang, and J. F. Chicharo, “Frequency selection in absolute phase maps recovery with two frequency projection fringes,” Opt. Express 20(12), 13238–13251 (2012).
    [Crossref] [PubMed]
  22. X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22(12), 4879–4891 (2013).
    [Crossref] [PubMed]
  23. M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
    [Crossref]
  24. C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
    [Crossref]
  25. Y. Xu and C. Ai, “Simple and effective phase unwrapping technique,” Proc. SPIE 2003, 254–263 (1993).
  26. S. Liu and L. Yang, “Regional phase unwrapping method based on fringe estimation and phase map segmentation,” Opt. Eng. 46(5), 051012 (2007).
    [Crossref]
  27. S. Zhang, X. Li, and S.-T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46(1), 50–57 (2007).
    [Crossref]
  28. K. Chen and L. Song, “A composite quality-guided phase unwrapping algorithm for fast 3d profile measurement,” Proc. SPIE 8563, 856305 (2012).
    [Crossref]
  29. K. Chen, J. Xi, and Y. Yu, “Fast quality-guided phase unwrapping algorithm for 3d profilometry based on object image edge detection,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2012), pp. 64–69.
  30. Z. Dai and X. Zha, “An accurate phase unwrapping algorithm based on reliability sorting and residue mask,” IEEE Geosci. Remote Sens. Lett. 9(2), 219–223 (2012).
    [Crossref]
  31. H. Zhong, J. Tang, S. Zhang, and M. Chen, “An improved quality-guided phase-unwrapping algorithm based on priority queue,” IEEE Geosci. Remote Sens. Lett. 8(2), 364–368 (2011).
    [Crossref]
  32. X. Su, W. Chen, Q. Zhang, and Y. Chao, “Dynamic 3-d shape measurement method based on ftp,” Opt. Laser Eng. 36(1), 49–64 (2001).
    [Crossref]
  33. A. Asundi and Z. Wensen, “Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill,” Appl. Optics 37(23), 5416–5420 (1998).
    [Crossref]
  34. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41(35), 7437–7444 (2002).
    [Crossref] [PubMed]
  35. A. Baldi, “Phase unwrapping by region growing,” Appl. Opt. 42(14), 2498–2505 (2003).
    [Crossref] [PubMed]
  36. T. Pribanić, S. Mrvoš, and J. Salvi, “Efficient multiple phase shift patterns for dense 3d acquisition in structured light scanning,” Image Vision Comput. 28(8), 1255–1266 (2010).
    [Crossref]
  37. Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
    [Crossref] [PubMed]
  38. Z. Lei, C. Wang, and C. Zhou, “Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation,” Opt. Laser Eng. 66, 249–257 (2015).
    [Crossref]
  39. D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47(1–3), 7–42 (2002).
    [Crossref]
  40. A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Int. J. Comput. Vision 33(3), 181–200 (1999).
    [Crossref]

2017 (1)

H. Deng, J. Wu, L. Zhu, Z. Yan, and L. Yu, “Texture edge-guided depth recovery for structured light-based depth sensor,” Multimed. Tools Appl. 76(3), 4211–4226 (2017).
[Crossref]

2016 (1)

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

2015 (4)

Y. Yang, X. Wang, Q. Liu, M. Xu, and L. Yu, “A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction,” Inform. Sci. 320, 306–319 (2015).
[Crossref]

Y. Yang, H. Deng, J. Wu, and L. Yu, “Depth map reconstruction and rectification through coding parameters for mobile 3d video system,” Neurocomputing 151, 663–673 (2015).
[Crossref]

J. L. Flores, J. A. Ferrari, G. G. Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Optics 54(30), 8827–8834 (2015).
[Crossref]

Z. Lei, C. Wang, and C. Zhou, “Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation,” Opt. Laser Eng. 66, 249–257 (2015).
[Crossref]

2013 (3)

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

Z. Zhang and J. Zhong, “Applicability analysis of wavelet-transform profilometry,” Opt. Express 21(16), 18777–18796 (2013).
[Crossref] [PubMed]

X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22(12), 4879–4891 (2013).
[Crossref] [PubMed]

2012 (4)

K. Chen and L. Song, “A composite quality-guided phase unwrapping algorithm for fast 3d profile measurement,” Proc. SPIE 8563, 856305 (2012).
[Crossref]

Z. Dai and X. Zha, “An accurate phase unwrapping algorithm based on reliability sorting and residue mask,” IEEE Geosci. Remote Sens. Lett. 9(2), 219–223 (2012).
[Crossref]

Y. Ding, J. Xi, Y. Yu, W. Cheng, S. Wang, and J. F. Chicharo, “Frequency selection in absolute phase maps recovery with two frequency projection fringes,” Opt. Express 20(12), 13238–13251 (2012).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

2011 (5)

A. Smolic, “3d video and free viewpoint video from capture to display,” Pattern Recogn. 44, 1958–1968 (2011).
[Crossref]

H. Zhong, J. Tang, S. Zhang, and M. Chen, “An improved quality-guided phase-unwrapping algorithm based on priority queue,” IEEE Geosci. Remote Sens. Lett. 8(2), 364–368 (2011).
[Crossref]

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
[Crossref]

Y. Ding, J. Xi, Y. Yu, and J. Chicharo, “Recovering the absolute phase maps of two fringe patterns with selected frequencies,” Opt. Lett. 36(13), 2518–2520 (2011).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
[Crossref] [PubMed]

2010 (5)

T. Pribanić, S. Mrvoš, and J. Salvi, “Efficient multiple phase shift patterns for dense 3d acquisition in structured light scanning,” Image Vision Comput. 28(8), 1255–1266 (2010).
[Crossref]

Y. Gong and S. Zhang, “Ultrafast 3-d shape measurement with an off-the-shelf dlp projector,” Opt. Express 18(19), 19743–19754 (2010).
[Crossref] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
[Crossref] [PubMed]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser Eng. 48(2), 133–140 (2010).
[Crossref]

2007 (2)

S. Liu and L. Yang, “Regional phase unwrapping method based on fringe estimation and phase map segmentation,” Opt. Eng. 46(5), 051012 (2007).
[Crossref]

S. Zhang, X. Li, and S.-T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46(1), 50–57 (2007).
[Crossref]

2006 (3)

2005 (1)

2003 (2)

2002 (2)

M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41(35), 7437–7444 (2002).
[Crossref] [PubMed]

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47(1–3), 7–42 (2002).
[Crossref]

2001 (1)

X. Su, W. Chen, Q. Zhang, and Y. Chao, “Dynamic 3-d shape measurement method based on ftp,” Opt. Laser Eng. 36(1), 49–64 (2001).
[Crossref]

1999 (1)

A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Int. J. Comput. Vision 33(3), 181–200 (1999).
[Crossref]

1998 (1)

A. Asundi and Z. Wensen, “Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill,” Appl. Optics 37(23), 5416–5420 (1998).
[Crossref]

1993 (1)

Y. Xu and C. Ai, “Simple and effective phase unwrapping technique,” Proc. SPIE 2003, 254–263 (1993).

1983 (1)

Ai, C.

Y. Xu and C. Ai, “Simple and effective phase unwrapping technique,” Proc. SPIE 2003, 254–263 (1993).

Asundi, A.

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
[Crossref]

A. Asundi and Z. Wensen, “Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill,” Appl. Optics 37(23), 5416–5420 (1998).
[Crossref]

Baldi, A.

Bobick, A. F.

A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Int. J. Comput. Vision 33(3), 181–200 (1999).
[Crossref]

Burton, D. R.

Chao, Y.

X. Su, W. Chen, Q. Zhang, and Y. Chao, “Dynamic 3-d shape measurement method based on ftp,” Opt. Laser Eng. 36(1), 49–64 (2001).
[Crossref]

Chen, K.

K. Chen and L. Song, “A composite quality-guided phase unwrapping algorithm for fast 3d profile measurement,” Proc. SPIE 8563, 856305 (2012).
[Crossref]

K. Chen, J. Xi, and Y. Yu, “Fast quality-guided phase unwrapping algorithm for 3d profilometry based on object image edge detection,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2012), pp. 64–69.

Chen, M.

H. Zhong, J. Tang, S. Zhang, and M. Chen, “An improved quality-guided phase-unwrapping algorithm based on priority queue,” IEEE Geosci. Remote Sens. Lett. 8(2), 364–368 (2011).
[Crossref]

Chen, Q.

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Chen, W.

X. Su, W. Chen, Q. Zhang, and Y. Chao, “Dynamic 3-d shape measurement method based on ftp,” Opt. Laser Eng. 36(1), 49–64 (2001).
[Crossref]

Cheng, W.

Chicharo, J.

Chicharo, J. F.

Cohen, S.

X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22(12), 4879–4891 (2013).
[Crossref] [PubMed]

Dai, Z.

Z. Dai and X. Zha, “An accurate phase unwrapping algorithm based on reliability sorting and residue mask,” IEEE Geosci. Remote Sens. Lett. 9(2), 219–223 (2012).
[Crossref]

Deng, H.

H. Deng, J. Wu, L. Zhu, Z. Yan, and L. Yu, “Texture edge-guided depth recovery for structured light-based depth sensor,” Multimed. Tools Appl. 76(3), 4211–4226 (2017).
[Crossref]

Y. Yang, H. Deng, J. Wu, and L. Yu, “Depth map reconstruction and rectification through coding parameters for mobile 3d video system,” Neurocomputing 151, 663–673 (2015).
[Crossref]

Ding, Y.

Feng, F.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Feng, S.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Ferrari, J. A.

J. L. Flores, J. A. Ferrari, G. G. Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Optics 54(30), 8827–8834 (2015).
[Crossref]

Flores, J. L.

J. L. Flores, J. A. Ferrari, G. G. Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Optics 54(30), 8827–8834 (2015).
[Crossref]

Gdeisat, M. A.

Gong, Y.

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser Eng. 48(2), 133–140 (2010).
[Crossref]

Gu, G.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Guan, C.

Hao, Q.

Hassebrook, L.

Hassebrook, L. G.

Herráez, M. A.

Huang, L.

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
[Crossref]

Huang, P. S.

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45(12), 123601 (2006).
[Crossref]

P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
[Crossref] [PubMed]

Intille, S. S.

A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Int. J. Comput. Vision 33(3), 181–200 (1999).
[Crossref]

Kemao, Q.

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
[Crossref]

Lalor, M. J.

Lau, D.

Lau, D. L.

Legarda-Saenz, R.

J. L. Flores, J. A. Ferrari, G. G. Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Optics 54(30), 8827–8834 (2015).
[Crossref]

Lei, Z.

Z. Lei, C. Wang, and C. Zhou, “Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation,” Opt. Laser Eng. 66, 249–257 (2015).
[Crossref]

Li, E.

Li, R.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

Li, X.

Liu, H.

Liu, K.

Liu, Q.

Y. Yang, X. Wang, Q. Liu, M. Xu, and L. Yu, “A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction,” Inform. Sci. 320, 306–319 (2015).
[Crossref]

Liu, S.

S. Liu and L. Yang, “Regional phase unwrapping method based on fringe estimation and phase map segmentation,” Opt. Eng. 46(5), 051012 (2007).
[Crossref]

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Milanfar, P.

X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22(12), 4879–4891 (2013).
[Crossref] [PubMed]

Moni, R. S.

S. Naveen and R. S. Moni, “A robust novel method for face recognition from 2d depth images using DWT and DFT score fusion,” in Proceedings of International Conference on Computational Systems and Communications (IEEE, 2015), pp. 1–6.

Mrvoš, S.

T. Pribanić, S. Mrvoš, and J. Salvi, “Efficient multiple phase shift patterns for dense 3d acquisition in structured light scanning,” Image Vision Comput. 28(8), 1255–1266 (2010).
[Crossref]

Mutoh, K.

Naveen, S.

S. Naveen and R. S. Moni, “A robust novel method for face recognition from 2d depth images using DWT and DFT score fusion,” in Proceedings of International Conference on Computational Systems and Communications (IEEE, 2015), pp. 1–6.

Peng, X.

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

T. Pribanić, S. Mrvoš, and J. Salvi, “Efficient multiple phase shift patterns for dense 3d acquisition in structured light scanning,” Image Vision Comput. 28(8), 1255–1266 (2010).
[Crossref]

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser Eng. 48(2), 133–140 (2010).
[Crossref]

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

T. Pribanić, S. Mrvoš, and J. Salvi, “Efficient multiple phase shift patterns for dense 3d acquisition in structured light scanning,” Image Vision Comput. 28(8), 1255–1266 (2010).
[Crossref]

Scharstein, D.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47(1–3), 7–42 (2002).
[Crossref]

Schiller, S.

X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22(12), 4879–4891 (2013).
[Crossref] [PubMed]

Shen, G.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

Silva, A.

J. L. Flores, J. A. Ferrari, G. G. Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Optics 54(30), 8827–8834 (2015).
[Crossref]

Smolic, A.

A. Smolic, “3d video and free viewpoint video from capture to display,” Pattern Recogn. 44, 1958–1968 (2011).
[Crossref]

Song, L.

K. Chen and L. Song, “A composite quality-guided phase unwrapping algorithm for fast 3d profile measurement,” Proc. SPIE 8563, 856305 (2012).
[Crossref]

Su, W.-H.

Su, X.

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
[Crossref]

X. Su, W. Chen, Q. Zhang, and Y. Chao, “Dynamic 3-d shape measurement method based on ftp,” Opt. Laser Eng. 36(1), 49–64 (2001).
[Crossref]

Szeliski, R.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47(1–3), 7–42 (2002).
[Crossref]

Takeda, M.

Tang, J.

H. Zhong, J. Tang, S. Zhang, and M. Chen, “An improved quality-guided phase-unwrapping algorithm based on priority queue,” IEEE Geosci. Remote Sens. Lett. 8(2), 364–368 (2011).
[Crossref]

Torales, G. G.

J. L. Flores, J. A. Ferrari, G. G. Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Optics 54(30), 8827–8834 (2015).
[Crossref]

Wang, C.

Z. Lei, C. Wang, and C. Zhou, “Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation,” Opt. Laser Eng. 66, 249–257 (2015).
[Crossref]

Wang, S.

Wang, X.

Y. Yang, X. Wang, Q. Liu, M. Xu, and L. Yu, “A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction,” Inform. Sci. 320, 306–319 (2015).
[Crossref]

Wang, Y.

Wensen, Z.

A. Asundi and Z. Wensen, “Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill,” Appl. Optics 37(23), 5416–5420 (1998).
[Crossref]

Wu, J.

H. Deng, J. Wu, L. Zhu, Z. Yan, and L. Yu, “Texture edge-guided depth recovery for structured light-based depth sensor,” Multimed. Tools Appl. 76(3), 4211–4226 (2017).
[Crossref]

Y. Yang, H. Deng, J. Wu, and L. Yu, “Depth map reconstruction and rectification through coding parameters for mobile 3d video system,” Neurocomputing 151, 663–673 (2015).
[Crossref]

Xi, J.

Xu, M.

Y. Yang, X. Wang, Q. Liu, M. Xu, and L. Yu, “A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction,” Inform. Sci. 320, 306–319 (2015).
[Crossref]

Xu, Y.

Y. Xu and C. Ai, “Simple and effective phase unwrapping technique,” Proc. SPIE 2003, 254–263 (1993).

Yan, Z.

H. Deng, J. Wu, L. Zhu, Z. Yan, and L. Yu, “Texture edge-guided depth recovery for structured light-based depth sensor,” Multimed. Tools Appl. 76(3), 4211–4226 (2017).
[Crossref]

Yang, L.

S. Liu and L. Yang, “Regional phase unwrapping method based on fringe estimation and phase map segmentation,” Opt. Eng. 46(5), 051012 (2007).
[Crossref]

Yang, Y.

Y. Yang, X. Wang, Q. Liu, M. Xu, and L. Yu, “A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction,” Inform. Sci. 320, 306–319 (2015).
[Crossref]

Y. Yang, H. Deng, J. Wu, and L. Yu, “Depth map reconstruction and rectification through coding parameters for mobile 3d video system,” Neurocomputing 151, 663–673 (2015).
[Crossref]

Yao, J.

Yau, S.-T.

Yu, L.

H. Deng, J. Wu, L. Zhu, Z. Yan, and L. Yu, “Texture edge-guided depth recovery for structured light-based depth sensor,” Multimed. Tools Appl. 76(3), 4211–4226 (2017).
[Crossref]

Y. Yang, H. Deng, J. Wu, and L. Yu, “Depth map reconstruction and rectification through coding parameters for mobile 3d video system,” Neurocomputing 151, 663–673 (2015).
[Crossref]

Y. Yang, X. Wang, Q. Liu, M. Xu, and L. Yu, “A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction,” Inform. Sci. 320, 306–319 (2015).
[Crossref]

Yu, Y.

Zha, X.

Z. Dai and X. Zha, “An accurate phase unwrapping algorithm based on reliability sorting and residue mask,” IEEE Geosci. Remote Sens. Lett. 9(2), 219–223 (2012).
[Crossref]

Zhang, D.

Zhang, M.

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

Zhang, Q.

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
[Crossref]

X. Su, W. Chen, Q. Zhang, and Y. Chao, “Dynamic 3-d shape measurement method based on ftp,” Opt. Laser Eng. 36(1), 49–64 (2001).
[Crossref]

Zhang, S.

Zhang, Z.

Zhao, M.

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
[Crossref]

Zhong, H.

H. Zhong, J. Tang, S. Zhang, and M. Chen, “An improved quality-guided phase-unwrapping algorithm based on priority queue,” IEEE Geosci. Remote Sens. Lett. 8(2), 364–368 (2011).
[Crossref]

Zhong, J.

Zhou, C.

Z. Lei, C. Wang, and C. Zhou, “Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation,” Opt. Laser Eng. 66, 249–257 (2015).
[Crossref]

Zhu, L.

H. Deng, J. Wu, L. Zhu, Z. Yan, and L. Yu, “Texture edge-guided depth recovery for structured light-based depth sensor,” Multimed. Tools Appl. 76(3), 4211–4226 (2017).
[Crossref]

Zhu, X.

X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22(12), 4879–4891 (2013).
[Crossref] [PubMed]

Zuo, C.

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Optics (3)

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Optics 50(33), 6214–6224 (2011).
[Crossref]

A. Asundi and Z. Wensen, “Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill,” Appl. Optics 37(23), 5416–5420 (1998).
[Crossref]

J. L. Flores, J. A. Ferrari, G. G. Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Optics 54(30), 8827–8834 (2015).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (2)

Z. Dai and X. Zha, “An accurate phase unwrapping algorithm based on reliability sorting and residue mask,” IEEE Geosci. Remote Sens. Lett. 9(2), 219–223 (2012).
[Crossref]

H. Zhong, J. Tang, S. Zhang, and M. Chen, “An improved quality-guided phase-unwrapping algorithm based on priority queue,” IEEE Geosci. Remote Sens. Lett. 8(2), 364–368 (2011).
[Crossref]

IEEE Trans. Image Process. (1)

X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22(12), 4879–4891 (2013).
[Crossref] [PubMed]

Image Vision Comput. (1)

T. Pribanić, S. Mrvoš, and J. Salvi, “Efficient multiple phase shift patterns for dense 3d acquisition in structured light scanning,” Image Vision Comput. 28(8), 1255–1266 (2010).
[Crossref]

Inform. Sci. (1)

Y. Yang, X. Wang, Q. Liu, M. Xu, and L. Yu, “A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction,” Inform. Sci. 320, 306–319 (2015).
[Crossref]

Int. J. Comput. Vision (2)

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47(1–3), 7–42 (2002).
[Crossref]

A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Int. J. Comput. Vision 33(3), 181–200 (1999).
[Crossref]

Multimed. Tools Appl. (1)

H. Deng, J. Wu, L. Zhu, Z. Yan, and L. Yu, “Texture edge-guided depth recovery for structured light-based depth sensor,” Multimed. Tools Appl. 76(3), 4211–4226 (2017).
[Crossref]

Neurocomputing (1)

Y. Yang, H. Deng, J. Wu, and L. Yu, “Depth map reconstruction and rectification through coding parameters for mobile 3d video system,” Neurocomputing 151, 663–673 (2015).
[Crossref]

Opt. Eng. (2)

S. Liu and L. Yang, “Regional phase unwrapping method based on fringe estimation and phase map segmentation,” Opt. Eng. 46(5), 051012 (2007).
[Crossref]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45(12), 123601 (2006).
[Crossref]

Opt. Express (9)

C. Guan, L. Hassebrook, and D. Lau, “Composite structured light pattern for three-dimensional video,” Opt. Express 11(5), 406–417 (2003).
[Crossref] [PubMed]

Y. Gong and S. Zhang, “Ultrafast 3-d shape measurement with an off-the-shelf dlp projector,” Opt. Express 18(19), 19743–19754 (2010).
[Crossref] [PubMed]

Y. Ding, J. Xi, Y. Yu, W. Cheng, S. Wang, and J. F. Chicharo, “Frequency selection in absolute phase maps recovery with two frequency projection fringes,” Opt. Express 20(12), 13238–13251 (2012).
[Crossref] [PubMed]

W.-H. Su and H. Liu, “Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities,” Opt. Express 14(20), 9178–9187 (2006).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

E. Li, X. Peng, J. Xi, J. Chicharo, J. Yao, and D. Zhang, “Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3d profilometry,” Opt. Express 13(5), 1561–1569 (2005).
[Crossref] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
[Crossref] [PubMed]

Z. Zhang and J. Zhong, “Applicability analysis of wavelet-transform profilometry,” Opt. Express 21(16), 18777–18796 (2013).
[Crossref] [PubMed]

Opt. Laser Eng. (5)

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser Eng. 48(2), 133–140 (2010).
[Crossref]

X. Su, W. Chen, Q. Zhang, and Y. Chao, “Dynamic 3-d shape measurement method based on ftp,” Opt. Laser Eng. 36(1), 49–64 (2001).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

Z. Lei, C. Wang, and C. Zhou, “Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation,” Opt. Laser Eng. 66, 249–257 (2015).
[Crossref]

Opt. Lett. (1)

Pattern Recogn. (2)

A. Smolic, “3d video and free viewpoint video from capture to display,” Pattern Recogn. 44, 1958–1968 (2011).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Proc. SPIE (2)

Y. Xu and C. Ai, “Simple and effective phase unwrapping technique,” Proc. SPIE 2003, 254–263 (1993).

K. Chen and L. Song, “A composite quality-guided phase unwrapping algorithm for fast 3d profile measurement,” Proc. SPIE 8563, 856305 (2012).
[Crossref]

Other (2)

K. Chen, J. Xi, and Y. Yu, “Fast quality-guided phase unwrapping algorithm for 3d profilometry based on object image edge detection,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2012), pp. 64–69.

S. Naveen and R. S. Moni, “A robust novel method for face recognition from 2d depth images using DWT and DFT score fusion,” in Proceedings of International Conference on Computational Systems and Communications (IEEE, 2015), pp. 1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Sketch of a SL system.
Fig. 2
Fig. 2 The proposed encoding band and the pattern. (a): A sketch map. (b): Details of the pattern.
Fig. 3
Fig. 3 An example of determining the typical line. (a)–(c): are the 3D model, the reference pattern and the captured pattern, respectively. (d)–(g): The spectrum diagram of line 423–426 respectively. The energy |F(fp)|, |F(fs)| and the ratio r are shown in the figures. The waveform of each line is partly presented in the upper-left corner.
Fig. 4
Fig. 4 Sketch of phase unwrapping cell (PUC).
Fig. 5
Fig. 5 Simulated phases obtained with different algorithms. (a)(f): Color-view and mesh of the ground truth of Δϕ, respectively. (b): Classic FTP with scanline-based phase unwrapping. (c): TFCP [19]. (d): TFPSP [21]. (e): The proposed LSPU. (g)–(j): Error maps corresponding to (b)–(e), respectively.
Fig. 6
Fig. 6 Performance of the proposed LSPU with different noise. The upper row shows the unwrapped phases, and the lower row illustrates the phase errors. (a)(e): μ=0, σ2 = 8.33. (b)(f): μ=0, σ2 = 33.33. (c)(g): μ=0, σ2 = 75. (d)(h): μ=0, σ2 = 133.33.
Fig. 7
Fig. 7 Results of head. (a): 3D model. (b)–(d): Captured patterns of conventional fringe, TFCP [19] and the proposed method, respectively. (e)–(g): Results of SPU, A+F and P+F, respectively. (h): Result of TFCP [19]. (i)(j): Results of the proposed LSPU and the hybrid scheme, respectively. (k): Ground truth.
Fig. 8
Fig. 8 Results of dragon. (a): 3D model. (b)–(d): Captured patterns of conventional fringe, TFCP [19] and the proposed method, respectively. (e)–(g): Results of SPU, A+F and P+F, respectively. (h): Result of TFCP [19]. (i)(j): Results of the proposed LSPU and the hybrid scheme, respectively. (k): Ground truth.
Fig. 9
Fig. 9 Results of Buddha. (a): 3D model. (b)–(d): Captured patterns of conventional fringe, TFCP [19] and the proposed method, respectively. (e)–(g): Results of SPU, A+F and P+F, respectively. (h): Result of TFCP [19]. (i)(j): Results of the proposed LSPU and the hybrid scheme, respectively. (k): Ground truth.
Fig. 10
Fig. 10 Results of ‘fist’. (a): Color map. (b)(c): The second patterns of the low frequency and the high frequency fringes, respectively. (d): Captured pattern of the proposed scheme. (e) to (h): Depth maps of SPU, TFPSP [20,21], the proposed LSPU and the proposed hybrid scheme, respectively.
Fig. 11
Fig. 11 Results of ‘portrait’. (a): Color map. (b)(c): The second patterns of the low frequency and the high frequency fringes, respectively. (d): Captured pattern of the proposed scheme. (e) to (h): Depth maps of SPU, TFPSP [20,21], the proposed LSPU and the proposed hybrid scheme, respectively.

Tables (3)

Tables Icon

Table 1 MAD of the obtained depth values (mm)

Tables Icon

Table 2 RMSE of the obtained depth values (mm)

Tables Icon

Table 3 RMSE of the obtained depth values (cm)

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I p r j ( i , x ) = A cos ( 2 π f i m x ) + B = A cos ( 2 π x / T i m ) + B
r i = | F ( f p ( i ) ) | | F ( f s ( i ) ) |
Δ ϕ w = ϕ w cap ϕ w ref
Δ ϕ u w ( k ) = Δ ϕ w ( k ) + m ( k ) 2 π , m ( k )
Δ ϕ u w ( 1 ) 2 π f D B ( 1 ) = = Δ ϕ u w ( k ) 2 π f D B ( k ) = = Δ ϕ u w ( N ) 2 π f D B ( N ) ,
E ( m , P U C ) = 2 N ( N 1 ) τ = 1 N 1 δ = τ + 1 N [ Δ ϕ w ( τ ) + m ( τ ) 2 π 2 π f D B ( τ ) Δ ϕ w ( δ ) + m ( δ ) 2 π 2 π f D B ( δ ) ] 2
m * = arg min m ( E ( m , P U C ) )
m ( j ) = round [ f DB ( j ) f D B ( i ) m ( i ) + f D B ( j ) Δ ϕ w ( i ) f D B ( i ) Δ ϕ w ( j ) 2 π f D B ( i ) ]
d F T P ( i , x ) = Δ ϕ u w ( i , x ) 2 π f i p
Z F T P ( i , x ) = b f L Z 0 f L b + Z 0 d F T P ( i , x )
S ( B cap , B ref ) = B cap B ¯ cap , B ref , B ¯ ref | B cap B ¯ cap | | B ref B ¯ ref |
d stereo * ( i , x ) = arg d stereo max { S ( B cap ( i , x ) , B ref ( i , x + d stereo ) ) }
Z stereo ( i , x ) = f L b Z 0 f L b + Z 0 d stereo * ( i , x )
Z hybrid ( i , x ) = { Z FTP ( i , x ) d FTP ( i , x ) is correct Z stereo ( i , x ) otherwise
{ I ref ( i , x ) = 120 + 60 cos ( 2 π f i x ) I cap ( i , x ) = 120 + 60 cos [ 2 π f i x + f 0 f i Δ ϕ ( i , x ) ]
Δ ϕ ( i , x ) = { 2.2 π u ( x 400 ) i < 400 2.2 π x / 800 i 400

Metrics