Abstract

We propose a novel approach to demonstrate simultaneous multi-wavelength locking during temperature changes in a silicon photonic polarization insensitive microring-based wavelength division multiplexing (WDM) receiver. The DC component of a single monitoring photodetector at the through port of the microring filter array is exploited as a feedback signal with no additional power consumption. This feedback signal is used in control circuitry to properly tune the microring filters using ohmic heating, thus creating a feedback loop for thermal adaptation. We describe the necessary information, specifically each microring filter’s room temperature resonant wavelength and tunability, which can be used to calibrate and achieve proper wavelength configurability and locking. In addition, we describe a simple control algorithm based on an adaptive gradient method often used in machine learning, allowing the receiver to endlessly demultiplex at different temperatures. We successfully achieve thermal adaptation over a temperature range >37°C and demultiplex a 4 × 25 Gb/s on-off-keying signal of 150 GHz channel spacing, all while the polarization is scrambling.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Error-free operation of a polarization-insensitive 4λ x 25 Gbps silicon photonic WDM receiver with closed-loop thermal stabilization of Si microrings

Daniel Y. Lee, Xuezhe Zheng, Jin Yao, Ying Luo, Jin-Hyoung Lee, Shiyun Lin, Hiren Thacker, Jock Bovington, Ivan Shubin, Stevan S. Djordjevic, John E. Cunningham, Kannan Raj, and Ashok V. Krishnamoorthy
Opt. Express 24(12) 13204-13209 (2016)

Simultaneous wavelength locking of microring modulator array with a single monitoring signal

Po Dong, Robert Gatdula, Kwangwoong Kim, Jeffrey H. Sinsky, Argishti Melikyan, Young-Kai Chen, Guilhem de Valicourt, and Jeffrey Lee
Opt. Express 25(14) 16040-16046 (2017)

WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability

Qing Fang, Tsung-Yang Liow, Jun Feng Song, Kah Wee Ang, Ming Bin Yu, Guo Qiang Lo, and Dim-Lee Kwong
Opt. Express 18(5) 5106-5113 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
  2. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
  3. M. Gehl, D. Trotter, A. Starbuck, A. Pomerene, A. L. Lentine, and C. DeRose, “Active phase correction of high resolution silicon photonic arrayed waveguide gratings,” Opt. Express 25(6), 6320–6334 (2017).
    [PubMed]
  4. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.
  5. P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, D. Van Thourhout, and J. Van Campenhout, “Polarization-Insensitive 5x20Gb/s WDM Ge Receiver using Compact Si Ring Filters with Collective Thermal Tuning,” in Optical Fiber Communication Conference (OSA, 2014), paper Th4C.5.
  6. P. Dong, Y.-K. Chen, and L. L. Buhl, “Reconfigurable Four-Channel Polarization Diversity Silicon Photonic WDM Receiver,” in Optical Fiber Communication Conference (OSA, 2015), paper W3A.2.
  7. D. Y. Lee, X. Zheng, J. Yao, Y. Luo, J.-H. Lee, S. Lin, H. Thacker, J. Bovington, I. Shubin, S. S. Djordjevic, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Error-free operation of a polarization-insensitive 4λ x 25 Gbps silicon photonic WDM receiver with closed-loop thermal stabilization of Si microrings,” Opt. Express 24(12), 13204–13209 (2016).
    [PubMed]
  8. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
    [PubMed]
  9. K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength Locking and Thermally Stabilizing Microring Resonators Using Dithering Signals,” J. Lightwave Technol. 32(3), 505–512 (2014).
  10. S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
  11. C. V. Poulton, P. Dong, and Y.-K. Chen, “Photoresistive Microring Heater with Resonance Control Loop,” in CLEO:2015 (OSA, 2015), paper SM2I.3.
  12. J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
  13. H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
    [PubMed]
  14. Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
    [PubMed]
  15. R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.
  16. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
  17. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
  18. F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photonics J. 6(2), 1–6 (2014).
  19. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).
  20. P. Dong, R. Gatdula, K. Kim, J. H. Sinsky, A. Melikyan, Y.-K. Chen, G. de Valicourt, and J. Lee, “Simultaneous wavelength locking of microring modulator array with a single monitoring signal,” Opt. Express 25(14), 16040–16046 (2017).
    [PubMed]
  21. J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

2017 (2)

2016 (2)

2015 (3)

2014 (5)

2011 (1)

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

2010 (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).

2009 (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).

Ackert, J. J.

Ahn, J.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Annoni, A.

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

Beausoleil, R. G.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength Locking and Thermally Stabilizing Microring Resonators Using Dithering Signals,” J. Lightwave Technol. 32(3), 505–512 (2014).

Binkert, N.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

Bovington, J.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

Carminati, M.

Caverley, M.

Chen, Y.-K.

Chrostowski, L.

Ciccarella, P.

Cox, J. A.

Cunningham, J. E.

Davis, A.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

de Valicourt, G.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

DeRose, C.

Djordjevic, S. S.

Dong, P.

P. Dong, R. Gatdula, K. Kim, J. H. Sinsky, A. Melikyan, Y.-K. Chen, G. de Valicourt, and J. Lee, “Simultaneous wavelength locking of microring modulator array with a single monitoring signal,” Opt. Express 25(14), 16040–16046 (2017).
[PubMed]

P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).

Duchi, J.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

Fattal, D.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Ferrari, G.

Fiorentino, M.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).

Gatdula, R.

Gehl, M.

Grillanda, S.

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photonics J. 6(2), 1–6 (2014).

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).

Guillén-Torres, M. Á.

Hazan, E.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

Hu, R.

Jaeger, N. A. F.

Jayatilleka, H.

Jouppi, N. P.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Kim, K.

Knights, A. P.

Krishnamoorthy, A. V.

Lee, D. Y.

Lee, J.

Lee, J.-H.

Lentine, A. L.

Li, Y.

Lin, S.

Logan, D. F.

Luo, Y.

Mak, J. C. C.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).

McLaren, M.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Melikyan, A.

Melloni, A.

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photonics J. 6(2), 1–6 (2014).

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).

Mikkelsen, J. C.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).

Morichetti, F.

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photonics J. 6(2), 1–6 (2014).

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).

Murray, K.

Padmaraju, K.

K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength Locking and Thermally Stabilizing Microring Resonators Using Dithering Signals,” J. Lightwave Technol. 32(3), 505–512 (2014).

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

Pomerene, A.

Poon, A. W.

Poon, J. K. S.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).

Raj, K.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).

Sacher, W. D.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).

Sampietro, M.

Santori, C. M.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Schreiber, R. S.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

Shekhar, S.

Shiraishi, T.

Shubin, I.

Singer, Y.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

Sinsky, J. H.

Sorel, M.

Spillane, S. M.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Starbuck, A.

Starbuck, A. L.

Strain, M.

Thacker, H.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).

Trotter, D.

Trotter, D. C.

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

Vantrease, D.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Xu, Q.

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

Xue, T.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).

Yao, J.

Yong, Z.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).

Zheng, X.

IEEE J. Quantum Electron. (1)

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).

IEEE J. Sel. Top. Quantum Electron. (2)

P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).

IEEE Photonics J. (1)

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photonics J. 6(2), 1–6 (2014).

J. Lightwave Technol. (1)

J. Mach. Learn. Res. (1)

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).

Opt. Express (6)

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[PubMed]

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
[PubMed]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[PubMed]

D. Y. Lee, X. Zheng, J. Yao, Y. Luo, J.-H. Lee, S. Lin, H. Thacker, J. Bovington, I. Shubin, S. S. Djordjevic, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Error-free operation of a polarization-insensitive 4λ x 25 Gbps silicon photonic WDM receiver with closed-loop thermal stabilization of Si microrings,” Opt. Express 24(12), 13204–13209 (2016).
[PubMed]

M. Gehl, D. Trotter, A. Starbuck, A. Pomerene, A. L. Lentine, and C. DeRose, “Active phase correction of high resolution silicon photonic arrayed waveguide gratings,” Opt. Express 25(6), 6320–6334 (2017).
[PubMed]

P. Dong, R. Gatdula, K. Kim, J. H. Sinsky, A. Melikyan, Y.-K. Chen, G. de Valicourt, and J. Lee, “Simultaneous wavelength locking of microring modulator array with a single monitoring signal,” Opt. Express 25(14), 16040–16046 (2017).
[PubMed]

Optica (1)

Proc. IEEE (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).

Other (5)

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in 16th IEEE Symposium on High Performance Interconnects (IEEE, 2008), pp. 182–189.

C. V. Poulton, P. Dong, and Y.-K. Chen, “Photoresistive Microring Heater with Resonance Control Loop,” in CLEO:2015 (OSA, 2015), paper SM2I.3.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, D. Van Thourhout, and J. Van Campenhout, “Polarization-Insensitive 5x20Gb/s WDM Ge Receiver using Compact Si Ring Filters with Collective Thermal Tuning,” in Optical Fiber Communication Conference (OSA, 2014), paper Th4C.5.

P. Dong, Y.-K. Chen, and L. L. Buhl, “Reconfigurable Four-Channel Polarization Diversity Silicon Photonic WDM Receiver,” in Optical Fiber Communication Conference (OSA, 2015), paper W3A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Proposed closed-loop control of a polarization insensitive microring WDM receiver with the detection of the DC signal in the combined through port. PBS/C: polarization beam splitter/combiner; PD: photodetector; MPD: monitoring photodetector. Picture of an unpackaged fabricated WDM receiver in the inset.
Fig. 2
Fig. 2 Illustrated calculations of MPD responsivity versus the heating powers of the first pair of microring heaters for (a) TE, (b) TM, and (c) mixed polarization inputs. An intersection of a solid and dashed line represents a minimum with no demultiplexing.
Fig. 3
Fig. 3 Algorithm flow for wavelength locking and tracking. The algorithm minimizes the MPD signal by tuning each microring filter, dropping all the optical power to the high-speed germanium PDs.
Fig. 4
Fig. 4 Fiber-to-PD responsivity of the MPD when the WDM receiver is at 23 °C (blue) and 60 °C (red) – intermediate responsivities in light gray. The microrings in the TE branch are more sensitive to the device temperature than those in the TM branch, resulting in a change to the general responsivity profile at higher temperatures.
Fig. 5
Fig. 5 Locking and demultiplexing of a mixed polarization 4 × 25 Gb/s WDM signal. Initialization runs only a few times, hence the eye diagram for PD3 not being completely closed before locking. After each microring filter locks on a wavelength, the corresponding eye diagram widens. In some cases, due to thermal crosstalk, the currently controlled heater slightly tunes/detunes neighboring microrings, but the algorithm fine tunes the microrings after initial locking.
Fig. 6
Fig. 6 (a) Modulated optical spectrum. (b) Temperature cycle during wavelength locking. (c) 25 Gb/s received electrical eye diagrams and (d) BERs from the 4 high-speed PDs during both temperature cycling and polarization scrambling.

Tables (1)

Tables Icon

Table 1 Microring Filter Resonance and Tunability

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P n+1 = P n η G n +ε [ V MPD ( P n ) ]

Metrics