Abstract

Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al2O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al2O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O2 chemistry in air.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

Kyle C. Hartig, Sivanandan S. Harilal, Mark C. Phillips, Brian E. Brumfield, and Igor Jovanovic
Opt. Express 25(10) 11477-11490 (2017)

Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy

Amir Hossein Rezaei, Mohammad Hossein Keshavarz, Masoud Kavosh Tehrani, Seyyed Mohammad Reza Darbani, Amir Hossein Farhadian, Seyyed Jabbar Mousavi, and Ali Mousaviazar
Appl. Opt. 55(12) 3233-3240 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. T. Su, Y. H. Huang, H. A. Witek, and Y. P. Lee, “Infrared absorption spectrum of the simplest Criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).
    [Crossref] [PubMed]
  2. H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas,” Anal. Chem. 89(14), 7750–7757 (2017).
    [Crossref] [PubMed]
  3. G. Jian, N. W. Piekiel, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study,” J. Phys. Chem. C 116(51), 26881–26887 (2012).
    [Crossref]
  4. L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release,” J. Phys. Chem. C 114(33), 14269–14275 (2010).
    [Crossref]
  5. Z. Miao, H. Chen, P. Liu, and Y. Liu, “Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization,” Anal. Chem. 83(11), 3994–3997 (2011).
    [Crossref] [PubMed]
  6. M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. Koppenaal, “Laser ablation inductively coupled plasma mass spectrometry,” Appl. Surf. Sci. 127, 255–261 (1998).
    [Crossref]
  7. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS): Fundamentals and Applications (Cambridge University Press, 2006).
  8. J. P. Singh and S. N. Thakur, Laser-induced breakdown spectroscopy (Elsevier, 2007).
  9. E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015).
    [Crossref] [PubMed]
  10. A. A. Bol’shakov, X. L. Mao, J. Jain, D. L. McIntyre, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of carbon isotopes,” Spectrochim. Acta B At. Spectrosc. 113, 106–112 (2015).
    [Crossref]
  11. X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
    [Crossref]
  12. X. L. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements,” Spectrochim. Acta B At. Spectrosc. 66(8), 604–609 (2011).
    [Crossref]
  13. R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
    [Crossref]
  14. A. Sarkar, X. L. Mao, G. C. Y. Chan, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of water for 1 D2/1 H1 ratio analysis,” Spectrochim. Acta B At. Spectrosc. 88, 46–53 (2013).
    [Crossref]
  15. M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, and C. T. Londhe, “Fourier transform spectral study of B 2Σ+ – X 2Σ+ system of AlO,” J. Mol. Spectrosc. 247(1), 47–56 (2008).
    [Crossref]
  16. C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+ → X2Σ+ emission spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 404–411 (2011).
    [Crossref] [PubMed]
  17. A. T. Patrascu, C. Hill, J. Tennyson, and S. N. Yurchenko, “Study of the electronic and rovibronic structure of the X 2Σ+, A 2Π, and B 2Σ+ states of AlO,” J. Chem. Phys. 141(14), 144312 (2014).
    [Crossref] [PubMed]
  18. M. Singh and M. D. Saksena, “C 2Πr – X 2Σ+ Transition of AlO,” Can. J. Phys. 61(9), 1347–1358 (1983).
    [Crossref]
  19. M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
    [Crossref] [PubMed]
  20. E. Wagner, “Ab initio versus CNDO potential surface calculations for Li2O and Al2O,” Theor. Chem. Acc. 32(4), 295–310 (1974).
    [Crossref]
  21. M. F. Cai, C. C. Carter, T. A. Miller, and V. E. Bondybey, “Fluorescence Excitation and Resolved Emission-Spectra of Supersonically Cooled Al2O,” J. Chem. Phys. 95(1), 73–79 (1991).
    [Crossref]
  22. J. Koput and A. Gertych, “Ab initio prediction of the potential energy surface and vibrational-rotational energy levels of dialuminum monoxide, Al2O,” J. Chem. Phys. 121(1), 130–135 (2004).
    [Crossref] [PubMed]
  23. J. M. Turney, L. Sari, Y. Yamaguchi, and H. F. Schaefer III, “The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them,” J. Chem. Phys. 122(9), 094304 (2005).
    [Crossref] [PubMed]
  24. J. Masip, A. Clotet, J. Ricart, F. Illas, and J. Rubio, “Molecular structure and vibrational frequencies of AlxOy (x= 1, 2; y⩽ 3) derived from ab initio calculations,” Chem. Phys. Lett. 144(4), 373–377 (1988).
    [Crossref]
  25. M. A. Douglas, R. H. Hauge, and J. L. Margrave, “Electronic Absorption and Emission Studies of the Group-Iiia Metal Suboxides Isolated in Cryogenic Rare-Gas Matrices,” High Temp. Sci. 16, 35–54 (1983).
  26. G. I. Pangilinan and T. P. Russell, “Role of Al-O2 chemistry in the laser-induced vaporization of Al films in air,” J. Chem. Phys. 111(2), 445–448 (1999).
    [Crossref]
  27. M. V. Pak and M. S. Gordon, “Potential energy surfaces for the Al + O2 reaction,” J. Chem. Phys. 118(10), 4471–4476 (2003).
    [Crossref]

2017 (1)

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas,” Anal. Chem. 89(14), 7750–7757 (2017).
[Crossref] [PubMed]

2015 (2)

E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015).
[Crossref] [PubMed]

A. A. Bol’shakov, X. L. Mao, J. Jain, D. L. McIntyre, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of carbon isotopes,” Spectrochim. Acta B At. Spectrosc. 113, 106–112 (2015).
[Crossref]

2014 (1)

A. T. Patrascu, C. Hill, J. Tennyson, and S. N. Yurchenko, “Study of the electronic and rovibronic structure of the X 2Σ+, A 2Π, and B 2Σ+ states of AlO,” J. Chem. Phys. 141(14), 144312 (2014).
[Crossref] [PubMed]

2013 (2)

A. Sarkar, X. L. Mao, G. C. Y. Chan, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of water for 1 D2/1 H1 ratio analysis,” Spectrochim. Acta B At. Spectrosc. 88, 46–53 (2013).
[Crossref]

Y. T. Su, Y. H. Huang, H. A. Witek, and Y. P. Lee, “Infrared absorption spectrum of the simplest Criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).
[Crossref] [PubMed]

2012 (1)

G. Jian, N. W. Piekiel, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study,” J. Phys. Chem. C 116(51), 26881–26887 (2012).
[Crossref]

2011 (6)

Z. Miao, H. Chen, P. Liu, and Y. Liu, “Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization,” Anal. Chem. 83(11), 3994–3997 (2011).
[Crossref] [PubMed]

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

X. L. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements,” Spectrochim. Acta B At. Spectrosc. 66(8), 604–609 (2011).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+ → X2Σ+ emission spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 404–411 (2011).
[Crossref] [PubMed]

2010 (1)

L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release,” J. Phys. Chem. C 114(33), 14269–14275 (2010).
[Crossref]

2008 (1)

M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, and C. T. Londhe, “Fourier transform spectral study of B 2Σ+ – X 2Σ+ system of AlO,” J. Mol. Spectrosc. 247(1), 47–56 (2008).
[Crossref]

2005 (1)

J. M. Turney, L. Sari, Y. Yamaguchi, and H. F. Schaefer III, “The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them,” J. Chem. Phys. 122(9), 094304 (2005).
[Crossref] [PubMed]

2004 (1)

J. Koput and A. Gertych, “Ab initio prediction of the potential energy surface and vibrational-rotational energy levels of dialuminum monoxide, Al2O,” J. Chem. Phys. 121(1), 130–135 (2004).
[Crossref] [PubMed]

2003 (1)

M. V. Pak and M. S. Gordon, “Potential energy surfaces for the Al + O2 reaction,” J. Chem. Phys. 118(10), 4471–4476 (2003).
[Crossref]

1999 (1)

G. I. Pangilinan and T. P. Russell, “Role of Al-O2 chemistry in the laser-induced vaporization of Al films in air,” J. Chem. Phys. 111(2), 445–448 (1999).
[Crossref]

1998 (1)

M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. Koppenaal, “Laser ablation inductively coupled plasma mass spectrometry,” Appl. Surf. Sci. 127, 255–261 (1998).
[Crossref]

1991 (1)

M. F. Cai, C. C. Carter, T. A. Miller, and V. E. Bondybey, “Fluorescence Excitation and Resolved Emission-Spectra of Supersonically Cooled Al2O,” J. Chem. Phys. 95(1), 73–79 (1991).
[Crossref]

1988 (1)

J. Masip, A. Clotet, J. Ricart, F. Illas, and J. Rubio, “Molecular structure and vibrational frequencies of AlxOy (x= 1, 2; y⩽ 3) derived from ab initio calculations,” Chem. Phys. Lett. 144(4), 373–377 (1988).
[Crossref]

1983 (2)

M. A. Douglas, R. H. Hauge, and J. L. Margrave, “Electronic Absorption and Emission Studies of the Group-Iiia Metal Suboxides Isolated in Cryogenic Rare-Gas Matrices,” High Temp. Sci. 16, 35–54 (1983).

M. Singh and M. D. Saksena, “C 2Πr – X 2Σ+ Transition of AlO,” Can. J. Phys. 61(9), 1347–1358 (1983).
[Crossref]

1974 (1)

E. Wagner, “Ab initio versus CNDO potential surface calculations for Li2O and Al2O,” Theor. Chem. Acc. 32(4), 295–310 (1974).
[Crossref]

Alexander, M. L.

M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. Koppenaal, “Laser ablation inductively coupled plasma mass spectrometry,” Appl. Surf. Sci. 127, 255–261 (1998).
[Crossref]

Behere, S. H.

M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, and C. T. Londhe, “Fourier transform spectral study of B 2Σ+ – X 2Σ+ system of AlO,” J. Mol. Spectrosc. 247(1), 47–56 (2008).
[Crossref]

Belca, I.

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

Bol’shakov, A. A.

A. A. Bol’shakov, X. L. Mao, J. Jain, D. L. McIntyre, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of carbon isotopes,” Spectrochim. Acta B At. Spectrosc. 113, 106–112 (2015).
[Crossref]

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

X. L. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements,” Spectrochim. Acta B At. Spectrosc. 66(8), 604–609 (2011).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Bondybey, V. E.

M. F. Cai, C. C. Carter, T. A. Miller, and V. E. Bondybey, “Fluorescence Excitation and Resolved Emission-Spectra of Supersonically Cooled Al2O,” J. Chem. Phys. 95(1), 73–79 (1991).
[Crossref]

Cai, M. F.

M. F. Cai, C. C. Carter, T. A. Miller, and V. E. Bondybey, “Fluorescence Excitation and Resolved Emission-Spectra of Supersonically Cooled Al2O,” J. Chem. Phys. 95(1), 73–79 (1991).
[Crossref]

Carter, C. C.

M. F. Cai, C. C. Carter, T. A. Miller, and V. E. Bondybey, “Fluorescence Excitation and Resolved Emission-Spectra of Supersonically Cooled Al2O,” J. Chem. Phys. 95(1), 73–79 (1991).
[Crossref]

Chan, G. C. Y.

A. Sarkar, X. L. Mao, G. C. Y. Chan, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of water for 1 D2/1 H1 ratio analysis,” Spectrochim. Acta B At. Spectrosc. 88, 46–53 (2013).
[Crossref]

Chen, H.

Z. Miao, H. Chen, P. Liu, and Y. Liu, “Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization,” Anal. Chem. 83(11), 3994–3997 (2011).
[Crossref] [PubMed]

Choi, I.

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Chowdhury, S.

L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release,” J. Phys. Chem. C 114(33), 14269–14275 (2010).
[Crossref]

Clotet, A.

J. Masip, A. Clotet, J. Ricart, F. Illas, and J. Rubio, “Molecular structure and vibrational frequencies of AlxOy (x= 1, 2; y⩽ 3) derived from ab initio calculations,” Chem. Phys. Lett. 144(4), 373–377 (1988).
[Crossref]

Deo, M. N.

M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, and C. T. Londhe, “Fourier transform spectral study of B 2Σ+ – X 2Σ+ system of AlO,” J. Mol. Spectrosc. 247(1), 47–56 (2008).
[Crossref]

Douglas, M. A.

M. A. Douglas, R. H. Hauge, and J. L. Margrave, “Electronic Absorption and Emission Studies of the Group-Iiia Metal Suboxides Isolated in Cryogenic Rare-Gas Matrices,” High Temp. Sci. 16, 35–54 (1983).

Gertych, A.

J. Koput and A. Gertych, “Ab initio prediction of the potential energy surface and vibrational-rotational energy levels of dialuminum monoxide, Al2O,” J. Chem. Phys. 121(1), 130–135 (2004).
[Crossref] [PubMed]

Gordon, M. S.

M. V. Pak and M. S. Gordon, “Potential energy surfaces for the Al + O2 reaction,” J. Chem. Phys. 118(10), 4471–4476 (2003).
[Crossref]

Hartman, J. S.

M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. Koppenaal, “Laser ablation inductively coupled plasma mass spectrometry,” Appl. Surf. Sci. 127, 255–261 (1998).
[Crossref]

Hauge, R. H.

M. A. Douglas, R. H. Hauge, and J. L. Margrave, “Electronic Absorption and Emission Studies of the Group-Iiia Metal Suboxides Isolated in Cryogenic Rare-Gas Matrices,” High Temp. Sci. 16, 35–54 (1983).

Hill, C.

A. T. Patrascu, C. Hill, J. Tennyson, and S. N. Yurchenko, “Study of the electronic and rovibronic structure of the X 2Σ+, A 2Π, and B 2Σ+ states of AlO,” J. Chem. Phys. 141(14), 144312 (2014).
[Crossref] [PubMed]

Hornkohl, J. O.

C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+ → X2Σ+ emission spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 404–411 (2011).
[Crossref] [PubMed]

Hou, H.

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas,” Anal. Chem. 89(14), 7750–7757 (2017).
[Crossref] [PubMed]

Huang, Y. H.

Y. T. Su, Y. H. Huang, H. A. Witek, and Y. P. Lee, “Infrared absorption spectrum of the simplest Criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).
[Crossref] [PubMed]

Illas, F.

J. Masip, A. Clotet, J. Ricart, F. Illas, and J. Rubio, “Molecular structure and vibrational frequencies of AlxOy (x= 1, 2; y⩽ 3) derived from ab initio calculations,” Chem. Phys. Lett. 144(4), 373–377 (1988).
[Crossref]

Jain, J.

A. A. Bol’shakov, X. L. Mao, J. Jain, D. L. McIntyre, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of carbon isotopes,” Spectrochim. Acta B At. Spectrosc. 113, 106–112 (2015).
[Crossref]

Jian, G.

G. Jian, N. W. Piekiel, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study,” J. Phys. Chem. C 116(51), 26881–26887 (2012).
[Crossref]

Kasalica, B.

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

Koppenaal, D. W.

M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. Koppenaal, “Laser ablation inductively coupled plasma mass spectrometry,” Appl. Surf. Sci. 127, 255–261 (1998).
[Crossref]

Koput, J.

J. Koput and A. Gertych, “Ab initio prediction of the potential energy surface and vibrational-rotational energy levels of dialuminum monoxide, Al2O,” J. Chem. Phys. 121(1), 130–135 (2004).
[Crossref] [PubMed]

Lee, Y. P.

Y. T. Su, Y. H. Huang, H. A. Witek, and Y. P. Lee, “Infrared absorption spectrum of the simplest Criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).
[Crossref] [PubMed]

Liu, P.

Z. Miao, H. Chen, P. Liu, and Y. Liu, “Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization,” Anal. Chem. 83(11), 3994–3997 (2011).
[Crossref] [PubMed]

Liu, Y.

Z. Miao, H. Chen, P. Liu, and Y. Liu, “Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization,” Anal. Chem. 83(11), 3994–3997 (2011).
[Crossref] [PubMed]

Londhe, C. T.

M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, and C. T. Londhe, “Fourier transform spectral study of B 2Σ+ – X 2Σ+ system of AlO,” J. Mol. Spectrosc. 247(1), 47–56 (2008).
[Crossref]

Mao, X.

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas,” Anal. Chem. 89(14), 7750–7757 (2017).
[Crossref] [PubMed]

Mao, X. L.

A. A. Bol’shakov, X. L. Mao, J. Jain, D. L. McIntyre, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of carbon isotopes,” Spectrochim. Acta B At. Spectrosc. 113, 106–112 (2015).
[Crossref]

A. Sarkar, X. L. Mao, G. C. Y. Chan, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of water for 1 D2/1 H1 ratio analysis,” Spectrochim. Acta B At. Spectrosc. 88, 46–53 (2013).
[Crossref]

X. L. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements,” Spectrochim. Acta B At. Spectrosc. 66(8), 604–609 (2011).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Margrave, J. L.

M. A. Douglas, R. H. Hauge, and J. L. Margrave, “Electronic Absorption and Emission Studies of the Group-Iiia Metal Suboxides Isolated in Cryogenic Rare-Gas Matrices,” High Temp. Sci. 16, 35–54 (1983).

Masip, J.

J. Masip, A. Clotet, J. Ricart, F. Illas, and J. Rubio, “Molecular structure and vibrational frequencies of AlxOy (x= 1, 2; y⩽ 3) derived from ab initio calculations,” Chem. Phys. Lett. 144(4), 373–377 (1988).
[Crossref]

McIntyre, D. L.

A. A. Bol’shakov, X. L. Mao, J. Jain, D. L. McIntyre, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of carbon isotopes,” Spectrochim. Acta B At. Spectrosc. 113, 106–112 (2015).
[Crossref]

McKay, C. P.

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Mendoza, A.

M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. Koppenaal, “Laser ablation inductively coupled plasma mass spectrometry,” Appl. Surf. Sci. 127, 255–261 (1998).
[Crossref]

Miao, Z.

Z. Miao, H. Chen, P. Liu, and Y. Liu, “Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization,” Anal. Chem. 83(11), 3994–3997 (2011).
[Crossref] [PubMed]

Miller, T. A.

M. F. Cai, C. C. Carter, T. A. Miller, and V. E. Bondybey, “Fluorescence Excitation and Resolved Emission-Spectra of Supersonically Cooled Al2O,” J. Chem. Phys. 95(1), 73–79 (1991).
[Crossref]

Pak, M. V.

M. V. Pak and M. S. Gordon, “Potential energy surfaces for the Al + O2 reaction,” J. Chem. Phys. 118(10), 4471–4476 (2003).
[Crossref]

Pangilinan, G. I.

G. I. Pangilinan and T. P. Russell, “Role of Al-O2 chemistry in the laser-induced vaporization of Al films in air,” J. Chem. Phys. 111(2), 445–448 (1999).
[Crossref]

Parigger, C. G.

C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+ → X2Σ+ emission spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 404–411 (2011).
[Crossref] [PubMed]

Patrascu, A. T.

A. T. Patrascu, C. Hill, J. Tennyson, and S. N. Yurchenko, “Study of the electronic and rovibronic structure of the X 2Σ+, A 2Π, and B 2Σ+ states of AlO,” J. Chem. Phys. 141(14), 144312 (2014).
[Crossref] [PubMed]

Peric, M.

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

Perry, D. L.

R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

X. L. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements,” Spectrochim. Acta B At. Spectrosc. 66(8), 604–609 (2011).
[Crossref]

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Petkovic, M.

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

Piekiel, N.

L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release,” J. Phys. Chem. C 114(33), 14269–14275 (2010).
[Crossref]

Piekiel, N. W.

G. Jian, N. W. Piekiel, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study,” J. Phys. Chem. C 116(51), 26881–26887 (2012).
[Crossref]

Rao, E. N.

Rao, S. V.

Ricart, J.

J. Masip, A. Clotet, J. Ricart, F. Illas, and J. Rubio, “Molecular structure and vibrational frequencies of AlxOy (x= 1, 2; y⩽ 3) derived from ab initio calculations,” Chem. Phys. Lett. 144(4), 373–377 (1988).
[Crossref]

Rubio, J.

J. Masip, A. Clotet, J. Ricart, F. Illas, and J. Rubio, “Molecular structure and vibrational frequencies of AlxOy (x= 1, 2; y⩽ 3) derived from ab initio calculations,” Chem. Phys. Lett. 144(4), 373–377 (1988).
[Crossref]

Russell, T. P.

G. I. Pangilinan and T. P. Russell, “Role of Al-O2 chemistry in the laser-induced vaporization of Al films in air,” J. Chem. Phys. 111(2), 445–448 (1999).
[Crossref]

Russo, R. E.

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas,” Anal. Chem. 89(14), 7750–7757 (2017).
[Crossref] [PubMed]

A. A. Bol’shakov, X. L. Mao, J. Jain, D. L. McIntyre, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of carbon isotopes,” Spectrochim. Acta B At. Spectrosc. 113, 106–112 (2015).
[Crossref]

A. Sarkar, X. L. Mao, G. C. Y. Chan, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of water for 1 D2/1 H1 ratio analysis,” Spectrochim. Acta B At. Spectrosc. 88, 46–53 (2013).
[Crossref]

X. L. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements,” Spectrochim. Acta B At. Spectrosc. 66(8), 604–609 (2011).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Saksena, M. D.

M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, and C. T. Londhe, “Fourier transform spectral study of B 2Σ+ – X 2Σ+ system of AlO,” J. Mol. Spectrosc. 247(1), 47–56 (2008).
[Crossref]

M. Singh and M. D. Saksena, “C 2Πr – X 2Σ+ Transition of AlO,” Can. J. Phys. 61(9), 1347–1358 (1983).
[Crossref]

Sari, L.

J. M. Turney, L. Sari, Y. Yamaguchi, and H. F. Schaefer III, “The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them,” J. Chem. Phys. 122(9), 094304 (2005).
[Crossref] [PubMed]

Sarkar, A.

A. Sarkar, X. L. Mao, G. C. Y. Chan, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of water for 1 D2/1 H1 ratio analysis,” Spectrochim. Acta B At. Spectrosc. 88, 46–53 (2013).
[Crossref]

Sarvan, M.

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

Schaefer, H. F.

J. M. Turney, L. Sari, Y. Yamaguchi, and H. F. Schaefer III, “The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them,” J. Chem. Phys. 122(9), 094304 (2005).
[Crossref] [PubMed]

Singh, M.

M. Singh and M. D. Saksena, “C 2Πr – X 2Σ+ Transition of AlO,” Can. J. Phys. 61(9), 1347–1358 (1983).
[Crossref]

Smith, M. R.

M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. Koppenaal, “Laser ablation inductively coupled plasma mass spectrometry,” Appl. Surf. Sci. 127, 255–261 (1998).
[Crossref]

Sorkhabi, O.

X. L. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements,” Spectrochim. Acta B At. Spectrosc. 66(8), 604–609 (2011).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Stojadinovic, S.

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

Su, Y. T.

Y. T. Su, Y. H. Huang, H. A. Witek, and Y. P. Lee, “Infrared absorption spectrum of the simplest Criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).
[Crossref] [PubMed]

Sunanda, K.

M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, and C. T. Londhe, “Fourier transform spectral study of B 2Σ+ – X 2Σ+ system of AlO,” J. Mol. Spectrosc. 247(1), 47–56 (2008).
[Crossref]

Sunku, S.

Tennyson, J.

A. T. Patrascu, C. Hill, J. Tennyson, and S. N. Yurchenko, “Study of the electronic and rovibronic structure of the X 2Σ+, A 2Π, and B 2Σ+ states of AlO,” J. Chem. Phys. 141(14), 144312 (2014).
[Crossref] [PubMed]

Turney, J. M.

J. M. Turney, L. Sari, Y. Yamaguchi, and H. F. Schaefer III, “The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them,” J. Chem. Phys. 122(9), 094304 (2005).
[Crossref] [PubMed]

Wagner, E.

E. Wagner, “Ab initio versus CNDO potential surface calculations for Li2O and Al2O,” Theor. Chem. Acc. 32(4), 295–310 (1974).
[Crossref]

Witek, H. A.

Y. T. Su, Y. H. Huang, H. A. Witek, and Y. P. Lee, “Infrared absorption spectrum of the simplest Criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).
[Crossref] [PubMed]

Yamaguchi, Y.

J. M. Turney, L. Sari, Y. Yamaguchi, and H. F. Schaefer III, “The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them,” J. Chem. Phys. 122(9), 094304 (2005).
[Crossref] [PubMed]

Yurchenko, S. N.

A. T. Patrascu, C. Hill, J. Tennyson, and S. N. Yurchenko, “Study of the electronic and rovibronic structure of the X 2Σ+, A 2Π, and B 2Σ+ states of AlO,” J. Chem. Phys. 141(14), 144312 (2014).
[Crossref] [PubMed]

Zachariah, M. R.

G. Jian, N. W. Piekiel, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study,” J. Phys. Chem. C 116(51), 26881–26887 (2012).
[Crossref]

L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release,” J. Phys. Chem. C 114(33), 14269–14275 (2010).
[Crossref]

Zekovic, L.

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release,” J. Phys. Chem. C 114(33), 14269–14275 (2010).
[Crossref]

Zorba, V.

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas,” Anal. Chem. 89(14), 7750–7757 (2017).
[Crossref] [PubMed]

Anal. Chem. (2)

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas,” Anal. Chem. 89(14), 7750–7757 (2017).
[Crossref] [PubMed]

Z. Miao, H. Chen, P. Liu, and Y. Liu, “Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization,” Anal. Chem. 83(11), 3994–3997 (2011).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. Koppenaal, “Laser ablation inductively coupled plasma mass spectrometry,” Appl. Surf. Sci. 127, 255–261 (1998).
[Crossref]

Can. J. Phys. (1)

M. Singh and M. D. Saksena, “C 2Πr – X 2Σ+ Transition of AlO,” Can. J. Phys. 61(9), 1347–1358 (1983).
[Crossref]

Chem. Phys. Lett. (1)

J. Masip, A. Clotet, J. Ricart, F. Illas, and J. Rubio, “Molecular structure and vibrational frequencies of AlxOy (x= 1, 2; y⩽ 3) derived from ab initio calculations,” Chem. Phys. Lett. 144(4), 373–377 (1988).
[Crossref]

High Temp. Sci. (1)

M. A. Douglas, R. H. Hauge, and J. L. Margrave, “Electronic Absorption and Emission Studies of the Group-Iiia Metal Suboxides Isolated in Cryogenic Rare-Gas Matrices,” High Temp. Sci. 16, 35–54 (1983).

J. Chem. Phys. (6)

G. I. Pangilinan and T. P. Russell, “Role of Al-O2 chemistry in the laser-induced vaporization of Al films in air,” J. Chem. Phys. 111(2), 445–448 (1999).
[Crossref]

M. V. Pak and M. S. Gordon, “Potential energy surfaces for the Al + O2 reaction,” J. Chem. Phys. 118(10), 4471–4476 (2003).
[Crossref]

M. F. Cai, C. C. Carter, T. A. Miller, and V. E. Bondybey, “Fluorescence Excitation and Resolved Emission-Spectra of Supersonically Cooled Al2O,” J. Chem. Phys. 95(1), 73–79 (1991).
[Crossref]

J. Koput and A. Gertych, “Ab initio prediction of the potential energy surface and vibrational-rotational energy levels of dialuminum monoxide, Al2O,” J. Chem. Phys. 121(1), 130–135 (2004).
[Crossref] [PubMed]

J. M. Turney, L. Sari, Y. Yamaguchi, and H. F. Schaefer III, “The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them,” J. Chem. Phys. 122(9), 094304 (2005).
[Crossref] [PubMed]

A. T. Patrascu, C. Hill, J. Tennyson, and S. N. Yurchenko, “Study of the electronic and rovibronic structure of the X 2Σ+, A 2Π, and B 2Σ+ states of AlO,” J. Chem. Phys. 141(14), 144312 (2014).
[Crossref] [PubMed]

J. Mol. Spectrosc. (1)

M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, and C. T. Londhe, “Fourier transform spectral study of B 2Σ+ – X 2Σ+ system of AlO,” J. Mol. Spectrosc. 247(1), 47–56 (2008).
[Crossref]

J. Phys. Chem. C (2)

G. Jian, N. W. Piekiel, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study,” J. Phys. Chem. C 116(51), 26881–26887 (2012).
[Crossref]

L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, “Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release,” J. Phys. Chem. C 114(33), 14269–14275 (2010).
[Crossref]

Science (1)

Y. T. Su, Y. H. Huang, H. A. Witek, and Y. P. Lee, “Infrared absorption spectrum of the simplest Criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+ → X2Σ+ emission spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 404–411 (2011).
[Crossref] [PubMed]

M. Sarvan, M. Perić, L. Zeković, S. Stojadinović, I. Belča, M. Petković, and B. Kasalica, “Identification of the C2∏-X2Σ+ band system of AlO in the ultraviolet galvanoluminescence obtained during aluminum anodization,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 672–678 (2011).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (5)

A. A. Bol’shakov, X. L. Mao, J. Jain, D. L. McIntyre, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of carbon isotopes,” Spectrochim. Acta B At. Spectrosc. 113, 106–112 (2015).
[Crossref]

X. L. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

X. L. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements,” Spectrochim. Acta B At. Spectrosc. 66(8), 604–609 (2011).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. L. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser Ablation Molecular Isotopic Spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

A. Sarkar, X. L. Mao, G. C. Y. Chan, and R. E. Russo, “Laser ablation molecular isotopic spectrometry of water for 1 D2/1 H1 ratio analysis,” Spectrochim. Acta B At. Spectrosc. 88, 46–53 (2013).
[Crossref]

Theor. Chem. Acc. (1)

E. Wagner, “Ab initio versus CNDO potential surface calculations for Li2O and Al2O,” Theor. Chem. Acc. 32(4), 295–310 (1974).
[Crossref]

Other (2)

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS): Fundamentals and Applications (Cambridge University Press, 2006).

J. P. Singh and S. N. Thakur, Laser-induced breakdown spectroscopy (Elsevier, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the experiment setup.
Fig. 2
Fig. 2 Resonance fluorescence spectra with the excitation wavelengths at (a) 302.13, (b) 302.94, (c) 303.30, and (d) 304.00 nm measured with a gate width of 10 ns, an accumulation of 100 pulses, and a fixed interpulsed delay time of 20 µs.
Fig. 3
Fig. 3 Resonance fluorescence spectra of Al2O with the excitation wavelengths at (a) 250.14, (b) 255.38, (c) 256.00, and (d) 261.40 nm measured with a gate width of 10 ns, an accumulation of 100 pulses, and a fixed interpulse delay time of 20 µs.
Fig. 4
Fig. 4 Temporal evolution of the normalized emission intensities of Al I 308.2 nm (diamond dots), O I 777.2 nm (triangle dots), AlO 313.08 nm (square dots), and Al2O 261.40 nm (circle dots).

Tables (1)

Tables Icon

Table 1 Band origins of the C2Πr –X2Σ+ transition of AlO. Cited from Refs [18,19].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Al + O 2 AlO + O
AlO + Al Al 2 O

Metrics