Abstract

We present a dual-resonance fiber surface plasmon resonance (SPR) sensor for biological analysis. The sensing element was fabricated by sequentially sputtering layers of indium tin oxide (ITO) (100 nm thickness) and Au (35 nm thickness) on the surface of an optical fiber. The refractive index dispersion effect of ITO material led to resonances in the near infrared and visible wavelength regions. The refractive index of ITO is larger than the optical fiber in visible spectral area (400 to 733nm), such that the structure is a typical Kretschmann configuration surface plasmon resonance sensor. However, an Otto configuration is observed in the near infrared area (NIR) due to the ITO refractive index being smaller than the fiber core. We characterized the sensor performance by measuring bulk refractive index (RI) sensitivity in the two configurations, which were 1345 nm/RIU in the Kretschmann configuration and 1100 nm/RIU in the Otto configuration. In addition, this sensor was applied for real-time and label-free monitoring of the IgG/anti-IgG biomolecular interaction. As a robust and ultra-compact SPR sensor, which possesses wide detection range and is highly sensitive, this fiber SPR sensor can be applied for real-time biological analysis and monitoring.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light

Hong-Yu Lin, Woo-Hu Tsai, Yu-Chia Tsao, and Bor-Chiou Sheu
Appl. Opt. 46(5) 800-806 (2007)

Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing

Yun Liu, Shimeng Chen, Qiang Liu, Jean-François Masson, and Wei Peng
Opt. Express 23(16) 20540-20548 (2015)

Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration

E. K. Akowuah, T. Gorman, and S. Haxha
Opt. Express 17(26) 23511-23521 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
    [PubMed]
  2. Z. Zhu, L. Liu, Z. Liu, Y. Zhang, and Y. Zhang, “High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance,” Opt. Lett. 42(10), 1982–1985 (2017).
    [PubMed]
  3. A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique,” Sens. Actuators B Chem. 216, 497–503 (2015).
  4. Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: applications to biological systems,” Biochim. Biophys. Acta 1331(2), 117–129 (1997).
    [PubMed]
  5. K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
    [PubMed]
  6. A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).
  7. J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).
  8. F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 1–29 (2017).
    [PubMed]
  9. E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
  10. R. Tabassum and B. D. Gupta, “Performance analysis of bimetallic layer with zinc oxide for SPR-based fiber optic sensor,” J. Lightwave Technol. 33(22), 4565–4571 (2015).
  11. S. K. Mishra and B. D. Gupta, “Surface plasmon resonance-based fiber-optic gas sensor utilizing indium–tin oxide (ITO) Thin Films,” Plasmonics 7(4), 627–632 (2012).
  12. R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
    [PubMed]
  13. S. Shukla, N. K. Sharma, and V. Sajal, “Theoretical analysis of surface plasmon resonance based fiber optic sensor using ITO and ZnO thin films,” Opt. Quantum Electron. 48(1), 1–9 (2016).
  14. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
  15. C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).
  16. S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
  17. N. K. Sharma, S. Yadav, and V. Sajal, “Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide,” Opt. Commun. 318, 74–78 (2014).
  18. A. M. Shrivastav, S. P. Usha, and B. D. Gupta, “Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting,” Biosens. Bioelectron. 79, 150–157 (2016).
    [PubMed]
  19. S. Y. Qian, Y. Z. Liang, J. Ma, Y. Zhang, J. Z. Zhao, and W. Peng, “Boronic acid modified fiber optic SPR sensor and its application in saccharide detection,” Sens. Actuators B Chem. 220, 1217–1223 (2015).
  20. Y. Zhao, Z. Q. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).
  21. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [PubMed]
  22. H.-Y. Lin, C.-H. Huang, C.-C. Huang, Y.-C. Liu, and L.-K. Chau, “Multiple resonance fiber-optic sensor with time division multiplexing for multianalyte detection,” Opt. Lett. 37(19), 3969–3971 (2012).
    [PubMed]
  23. N. K. Sharma, M. Rani, and V. Sajal, “Surface plasmon resonance based fiber optic sensor with double resonance dips,” Sens. Actuators B Chem. 188, 326–333 (2013).
  24. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).

2017 (2)

Z. Zhu, L. Liu, Z. Liu, Y. Zhang, and Y. Zhang, “High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance,” Opt. Lett. 42(10), 1982–1985 (2017).
[PubMed]

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 1–29 (2017).
[PubMed]

2016 (3)

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

S. Shukla, N. K. Sharma, and V. Sajal, “Theoretical analysis of surface plasmon resonance based fiber optic sensor using ITO and ZnO thin films,” Opt. Quantum Electron. 48(1), 1–9 (2016).

A. M. Shrivastav, S. P. Usha, and B. D. Gupta, “Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting,” Biosens. Bioelectron. 79, 150–157 (2016).
[PubMed]

2015 (5)

S. Y. Qian, Y. Z. Liang, J. Ma, Y. Zhang, J. Z. Zhao, and W. Peng, “Boronic acid modified fiber optic SPR sensor and its application in saccharide detection,” Sens. Actuators B Chem. 220, 1217–1223 (2015).

R. Tabassum and B. D. Gupta, “Performance analysis of bimetallic layer with zinc oxide for SPR-based fiber optic sensor,” J. Lightwave Technol. 33(22), 4565–4571 (2015).

R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
[PubMed]

A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique,” Sens. Actuators B Chem. 216, 497–503 (2015).

Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
[PubMed]

2014 (3)

J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).

N. K. Sharma, S. Yadav, and V. Sajal, “Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide,” Opt. Commun. 318, 74–78 (2014).

Y. Zhao, Z. Q. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).

2013 (1)

N. K. Sharma, M. Rani, and V. Sajal, “Surface plasmon resonance based fiber optic sensor with double resonance dips,” Sens. Actuators B Chem. 188, 326–333 (2013).

2012 (2)

H.-Y. Lin, C.-H. Huang, C.-C. Huang, Y.-C. Liu, and L.-K. Chau, “Multiple resonance fiber-optic sensor with time division multiplexing for multianalyte detection,” Opt. Lett. 37(19), 3969–3971 (2012).
[PubMed]

S. K. Mishra and B. D. Gupta, “Surface plasmon resonance-based fiber-optic gas sensor utilizing indium–tin oxide (ITO) Thin Films,” Plasmonics 7(4), 627–632 (2012).

2011 (1)

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

2008 (4)

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).

2005 (2)

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[PubMed]

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: applications to biological systems,” Biochim. Biophys. Acta 1331(2), 117–129 (1997).
[PubMed]

Abu Bakar, M. H.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

Alwahib, A. A.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

Anamt, M. N.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

Aspnes, D. E.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

Baldini, F.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 1–29 (2017).
[PubMed]

Banerji, S.

Booksh, K. S.

Boukherroub, R.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Cerruti, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

Chau, L.-K.

Chen, S.

Chiavaioli, F.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 1–29 (2017).
[PubMed]

Dash, J. N.

J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).

Deng, Z. Q.

Y. Zhao, Z. Q. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).

Duscher, G.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

Efremenko, A.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

Franzen, S.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).

García-Vidal, F. J.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).

Gouveia, C. A. J.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 1–29 (2017).
[PubMed]

Gupta, B. D.

A. M. Shrivastav, S. P. Usha, and B. D. Gupta, “Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting,” Biosens. Bioelectron. 79, 150–157 (2016).
[PubMed]

R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
[PubMed]

R. Tabassum and B. D. Gupta, “Performance analysis of bimetallic layer with zinc oxide for SPR-based fiber optic sensor,” J. Lightwave Technol. 33(22), 4565–4571 (2015).

S. K. Mishra and B. D. Gupta, “Surface plasmon resonance-based fiber-optic gas sensor utilizing indium–tin oxide (ITO) Thin Films,” Plasmonics 7(4), 627–632 (2012).

Gupta, V.

A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique,” Sens. Actuators B Chem. 216, 497–503 (2015).

Habraken, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Hastanin, J.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Huang, C.-C.

Huang, C.-H.

Inamori, K.

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Inoue, Y.

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Jha, R.

J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).

Jorge, P. A. S.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 1–29 (2017).
[PubMed]

Katayama, Y.

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Kim, Y. C.

Kinoshita, E.

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Koike, T.

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Kyo, M.

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Laughlin, B.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

Lenaerts, C.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Leonard, D. N.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

Liang, Y. Z.

S. Y. Qian, Y. Z. Liang, J. Ma, Y. Zhang, J. Z. Zhao, and W. Peng, “Boronic acid modified fiber optic SPR sensor and its application in saccharide detection,” Sens. Actuators B Chem. 220, 1217–1223 (2015).

Lim, H. N.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

Lin, H.-Y.

Liu, L.

Liu, Q.

Liu, Y.

Liu, Y.-C.

Liu, Z.

Losego, M.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

Ma, J.

S. Y. Qian, Y. Z. Liang, J. Ma, Y. Zhang, J. Z. Zhao, and W. Peng, “Boronic acid modified fiber optic SPR sensor and its application in saccharide detection,” Sens. Actuators B Chem. 220, 1217–1223 (2015).

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: applications to biological systems,” Biochim. Biophys. Acta 1331(2), 117–129 (1997).
[PubMed]

Mahdi, M. A.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

Maria, J. P.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

Maricot, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Martín-Moreno, L.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).

Masson, J. F.

Ming, H. N.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

Mishra, S. K.

S. K. Mishra and B. D. Gupta, “Surface plasmon resonance-based fiber-optic gas sensor utilizing indium–tin oxide (ITO) Thin Films,” Plasmonics 7(4), 627–632 (2012).

Nishiya, Y.

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Paliwal, A.

A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique,” Sens. Actuators B Chem. 216, 497–503 (2015).

Peng, W.

Qian, S. Y.

S. Y. Qian, Y. Z. Liang, J. Ma, Y. Zhang, J. Z. Zhao, and W. Peng, “Boronic acid modified fiber optic SPR sensor and its application in saccharide detection,” Sens. Actuators B Chem. 220, 1217–1223 (2015).

Rani, M.

N. K. Sharma, M. Rani, and V. Sajal, “Surface plasmon resonance based fiber optic sensor with double resonance dips,” Sens. Actuators B Chem. 188, 326–333 (2013).

Rhodes, C.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

Rodrigo, S. G.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).

Sadrolhosseini, A. R.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

Sajal, V.

S. Shukla, N. K. Sharma, and V. Sajal, “Theoretical analysis of surface plasmon resonance based fiber optic sensor using ITO and ZnO thin films,” Opt. Quantum Electron. 48(1), 1–9 (2016).

N. K. Sharma, S. Yadav, and V. Sajal, “Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide,” Opt. Commun. 318, 74–78 (2014).

N. K. Sharma, M. Rani, and V. Sajal, “Surface plasmon resonance based fiber optic sensor with double resonance dips,” Sens. Actuators B Chem. 188, 326–333 (2013).

Salamon, Z.

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: applications to biological systems,” Biochim. Biophys. Acta 1331(2), 117–129 (1997).
[PubMed]

Sharma, A.

A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique,” Sens. Actuators B Chem. 216, 497–503 (2015).

Sharma, N. K.

S. Shukla, N. K. Sharma, and V. Sajal, “Theoretical analysis of surface plasmon resonance based fiber optic sensor using ITO and ZnO thin films,” Opt. Quantum Electron. 48(1), 1–9 (2016).

N. K. Sharma, S. Yadav, and V. Sajal, “Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide,” Opt. Commun. 318, 74–78 (2014).

N. K. Sharma, M. Rani, and V. Sajal, “Surface plasmon resonance based fiber optic sensor with double resonance dips,” Sens. Actuators B Chem. 188, 326–333 (2013).

Shrivastav, A. M.

A. M. Shrivastav, S. P. Usha, and B. D. Gupta, “Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting,” Biosens. Bioelectron. 79, 150–157 (2016).
[PubMed]

Shukla, S.

S. Shukla, N. K. Sharma, and V. Sajal, “Theoretical analysis of surface plasmon resonance based fiber optic sensor using ITO and ZnO thin films,” Opt. Quantum Electron. 48(1), 1–9 (2016).

Sonoda, T.

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Szunerits, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Tabassum, R.

Tollin, G.

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: applications to biological systems,” Biochim. Biophys. Acta 1331(2), 117–129 (1997).
[PubMed]

Tomar, M.

A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique,” Sens. Actuators B Chem. 216, 497–503 (2015).

Usha, S. P.

A. M. Shrivastav, S. P. Usha, and B. D. Gupta, “Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting,” Biosens. Bioelectron. 79, 150–157 (2016).
[PubMed]

Verma, R.

R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
[PubMed]

Vilcot, J. P.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Wang, Q.

Y. Zhao, Z. Q. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).

Weibel, S.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

Wijaya, E.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Yaacob, M. H.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

Yadav, S.

N. K. Sharma, S. Yadav, and V. Sajal, “Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide,” Opt. Commun. 318, 74–78 (2014).

Zhang, Y.

Zhao, J. Z.

S. Y. Qian, Y. Z. Liang, J. Ma, Y. Zhang, J. Z. Zhao, and W. Peng, “Boronic acid modified fiber optic SPR sensor and its application in saccharide detection,” Sens. Actuators B Chem. 220, 1217–1223 (2015).

Zhao, Y.

Y. Zhao, Z. Q. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).

Zhu, Z.

Anal. Chem. (1)

K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama, “Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule,” Anal. Chem. 77(13), 3979–3985 (2005).
[PubMed]

Biochim. Biophys. Acta (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: applications to biological systems,” Biochim. Biophys. Acta 1331(2), 117–129 (1997).
[PubMed]

Biosens. Bioelectron. (1)

A. M. Shrivastav, S. P. Usha, and B. D. Gupta, “Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting,” Biosens. Bioelectron. 79, 150–157 (2016).
[PubMed]

Biosensors (Basel) (1)

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(2), 1–29 (2017).
[PubMed]

Curr. Opin. Solid State Mater. Sci. (1)

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J. P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).

Food Chem. (1)

R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,” Food Chem. 166, 568–575 (2015).
[PubMed]

IEEE Photonics J. (1)

A. A. Alwahib, A. R. Sadrolhosseini, M. N. Anamt, H. N. Lim, M. H. Yaacob, M. H. Abu Bakar, H. N. Ming, and M. A. Mahdi, “Reduced graphene oxide/maghemite nanocomposite for detection of hydrocarbon vapor using surface plasmon resonance,” IEEE Photonics J. 8(4), 4802009 (2016).

IEEE Photonics Technol. Lett. (1)

J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).

J. Appl. Phys. (2)

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2008).

J. Lightwave Technol. (1)

J. Phys. Chem. C (1)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).

Opt. Commun. (1)

N. K. Sharma, S. Yadav, and V. Sajal, “Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide,” Opt. Commun. 318, 74–78 (2014).

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

S. Shukla, N. K. Sharma, and V. Sajal, “Theoretical analysis of surface plasmon resonance based fiber optic sensor using ITO and ZnO thin films,” Opt. Quantum Electron. 48(1), 1–9 (2016).

Phys. Rev. B (1)

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).

Plasmonics (1)

S. K. Mishra and B. D. Gupta, “Surface plasmon resonance-based fiber-optic gas sensor utilizing indium–tin oxide (ITO) Thin Films,” Plasmonics 7(4), 627–632 (2012).

Sens. Actuators B Chem. (4)

A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique,” Sens. Actuators B Chem. 216, 497–503 (2015).

S. Y. Qian, Y. Z. Liang, J. Ma, Y. Zhang, J. Z. Zhao, and W. Peng, “Boronic acid modified fiber optic SPR sensor and its application in saccharide detection,” Sens. Actuators B Chem. 220, 1217–1223 (2015).

Y. Zhao, Z. Q. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).

N. K. Sharma, M. Rani, and V. Sajal, “Surface plasmon resonance based fiber optic sensor with double resonance dips,” Sens. Actuators B Chem. 188, 326–333 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optic fiber sensor probe consists of an ITO/Au two-layer structure. (a) Schematic diagram and (b) cross section of the sensing probe.
Fig. 2
Fig. 2 (a) The dispersion curve of ITO material; (b) Normalized spectra response for the same sensor probe with different thickness of ITO coatings; (c) RI response of ITO coating with 100nm.
Fig. 3
Fig. 3 (a) Experiment transmission spectrum of fiber SPR sensor; (b) Real part of spatial magnetic field in z direction at the reflection minimum value for two dips.
Fig. 4
Fig. 4 (a) Experimental setup of the dual dips optic fiber sensor system; (b) RI response of two resonances.
Fig. 5
Fig. 5 Antibody immobilization procedure on the surface of the sensing probe.
Fig. 6
Fig. 6 Real-time biomolecule response with different concentration of IgG samples. (a) Wavelength response of Kretschmann resonance; (b) Wavelength response of Otto resonance; Linear fitting curve of (c) Kretschmann resonance and (d) Otto resonance.
Fig. 7
Fig. 7 Temperature response of (a) dip A and (b) dip B.

Metrics