Abstract

We numerically analyze PiFM’s lateral and vertical (subsurface) imaging performance in the visible and IR regimes. The lateral spatial resolution and subsurface imaging capabilities are limited by the field spatial confinement near the tip apex, which is directly proportional to the excitation wavelength. In addition, we show that near-field optical force exerted on the tip due to sample molecular resonance is indeed in the detectable range. Moreover, driving sample on (off) resonance reveals high (low) contrast. The strength of the optical forces is assessed for metal (gold), polymers (Polystyrene and Polymethylmethacrylate), and solid (SiC). By increasing tip-coating thickness from 5 nm to 35 nm, the gap-field enhancement decreases to about 40%. In IR, force spectrum over an absorption band is predominantly following the real part of the polarizability, as predicted by dipole-dipole approximation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale subsurface- and material-specific identification of single nanoparticles

Zachary Nuño, Brandon Hessler, Jerry Ochoa, Young-Seok Shon, Codi Bonney, and Yohannes Abate
Opt. Express 19(21) 20865-20875 (2011)

Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy

Marc Tobias Wenzel, Thomas Härtling, Phillip Olk, Susanne C. Kehr, Stefan Grafstræm, Stephan Winnerl, Manfred Helm, and Lukas M. Eng
Opt. Express 16(16) 12302-12312 (2008)

Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy

T. Taubner, F. eilmann, and R. Hillenbrand
Opt. Express 13(22) 8893-8899 (2005)

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
    [PubMed]
  2. Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
  3. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional Group Imaging by Chemical Force Microscopy,” Science 265(5181), 2071–2074 (1994).
    [PubMed]
  4. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58, 2921–2923 (1991).
  5. J. A. Sidles, “Noninductive detection of single‐proton magnetic resonance,” Appl. Phys. Lett. 58, 2854–2856 (1991).
  6. I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
    [PubMed]
  7. I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
    [PubMed]
  8. J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).
  9. F. Huang, V. A. Tamma, Z. Mardy, J. Burdett, and H. K. Wickramasinghe, “Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces,” Sci. Rep. 5, 10610 (2015).
    [PubMed]
  10. T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
    [PubMed]
  11. B. Hecht, B. Sick, and U. P. Wild, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
  12. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269(5227), 1083–1085 (1995).
    [PubMed]
  13. H. K. Wickramasinghe and C. C. Williams, “Apertureless Near-Field Optical Microscope,” U.S. Patent No. 4 947 034, August 1990.
  14. K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).
  15. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
    [PubMed]
  16. J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).
  17. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University 2006)
  18. W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared Properties of Hexagonal Silicon Carbide,” Phys. Rev. 113, 127–132 (1959).
  19. O. N. Tretinnikov, “IR spectroscopic study of the effect of polymer nanofilm thickness on its surface density,” J. Appl. Spectrosc. 75, 64–68 (2008).
  20. V. M. Zolotarev, B. Z. Volchek, and E. N. Vlasova, “Optical constants of industrial polymers in the IR region,” Opt. Spectrosc. 101, 716–723 (2006).
  21. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
  22. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [PubMed]
  23. C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” (Institut für Angewandte Physik, 2002)
  24. Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).
  25. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [PubMed]
  26. D. Östling, P. Apell, and A. Rosén, “Theory for Collective Resonances of the C 60 Molecule,” Europhys. Lett. 21, 539 (1993).
  27. J. W. Liaw, M. K. Kuo, and C. N. Liao, “Plasmon Resonances of Spherical and Ellipsoidal Nanoparticles,” J. Electromagn. Waves Appl. 19, 1787–1794 (2005).
  28. Z. Jian, D. Xing-chun, L. Jian-jun, and Z. Jun-wu, “Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting,” J. Nanopart. Res. 13, 953–958 (2011).
  29. E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3, 543–547 (2003).
  30. H. U. Yang and M. B. Raschke, “Resonant optical gradient force interaction for nano-imaging and -spectroscopy,” New J. Phys. 18, 053042 (2016).
  31. J. L. Bohn, D. J. Nesbitt, and A. Gallagher, “Field enhancement in apertureless near-field scanning optical microscopy,” J. Opt. Soc. Am. A 18(12), 2998–3006 (2001).
    [PubMed]
  32. A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy,” ACS Photonics 4, 846–851 (2017).
  33. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
    [PubMed]
  34. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-Specific Infrared Recognition of Single Sub-10 nm Particles by Substrate-Enhanced Scattering-Type Near-Field Microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
    [PubMed]
  35. F. T. Ladani and E. O. Potma, “Dyadic Green’s function formalism for photoinduced forces in tip-sample nanojunctions,” Phys. Rev. B 95, 205440 (2017).
  36. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
    [PubMed]
  37. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).

2017 (2)

F. T. Ladani and E. O. Potma, “Dyadic Green’s function formalism for photoinduced forces in tip-sample nanojunctions,” Phys. Rev. B 95, 205440 (2017).

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy,” ACS Photonics 4, 846–851 (2017).

2016 (2)

H. U. Yang and M. B. Raschke, “Resonant optical gradient force interaction for nano-imaging and -spectroscopy,” New J. Phys. 18, 053042 (2016).

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[PubMed]

2015 (2)

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

F. Huang, V. A. Tamma, Z. Mardy, J. Burdett, and H. K. Wickramasinghe, “Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces,” Sci. Rep. 5, 10610 (2015).
[PubMed]

2014 (1)

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

2012 (1)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

2011 (2)

Z. Jian, D. Xing-chun, L. Jian-jun, and Z. Jun-wu, “Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting,” J. Nanopart. Res. 13, 953–958 (2011).

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[PubMed]

2010 (2)

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[PubMed]

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

2008 (1)

O. N. Tretinnikov, “IR spectroscopic study of the effect of polymer nanofilm thickness on its surface density,” J. Appl. Spectrosc. 75, 64–68 (2008).

2007 (2)

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-Specific Infrared Recognition of Single Sub-10 nm Particles by Substrate-Enhanced Scattering-Type Near-Field Microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[PubMed]

2006 (2)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).

V. M. Zolotarev, B. Z. Volchek, and E. N. Vlasova, “Optical constants of industrial polymers in the IR region,” Opt. Spectrosc. 101, 716–723 (2006).

2005 (1)

J. W. Liaw, M. K. Kuo, and C. N. Liao, “Plasmon Resonances of Spherical and Ellipsoidal Nanoparticles,” J. Electromagn. Waves Appl. 19, 1787–1794 (2005).

2004 (1)

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[PubMed]

2003 (2)

E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3, 543–547 (2003).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

2001 (1)

2000 (3)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[PubMed]

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

B. Hecht, B. Sick, and U. P. Wild, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).

1998 (1)

1995 (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269(5227), 1083–1085 (1995).
[PubMed]

1994 (1)

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional Group Imaging by Chemical Force Microscopy,” Science 265(5181), 2071–2074 (1994).
[PubMed]

1993 (1)

D. Östling, P. Apell, and A. Rosén, “Theory for Collective Resonances of the C 60 Molecule,” Europhys. Lett. 21, 539 (1993).

1991 (2)

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58, 2921–2923 (1991).

J. A. Sidles, “Noninductive detection of single‐proton magnetic resonance,” Appl. Phys. Lett. 58, 2854–2856 (1991).

1987 (1)

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).

1986 (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[PubMed]

1959 (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared Properties of Hexagonal Silicon Carbide,” Phys. Rev. 113, 127–132 (1959).

Ambrosio, A.

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy,” ACS Photonics 4, 846–851 (2017).

Apell, P.

D. Östling, P. Apell, and A. Rosén, “Theory for Collective Resonances of the C 60 Molecule,” Europhys. Lett. 21, 539 (1993).

Apkarian, V. A.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

Binnig, G.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[PubMed]

Bohn, J. L.

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

Brocious, J.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

Burdett, J.

F. Huang, V. A. Tamma, Z. Mardy, J. Burdett, and H. K. Wickramasinghe, “Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces,” Sci. Rep. 5, 10610 (2015).
[PubMed]

Capasso, F.

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy,” ACS Photonics 4, 846–851 (2017).

Cerjan, B.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[PubMed]

Chaumet, P. C.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[PubMed]

Chow, E. M.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

Cvitkovic, A.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-Specific Infrared Recognition of Single Sub-10 nm Particles by Substrate-Enhanced Scattering-Type Near-Field Microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

Devlin, R. C.

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy,” ACS Photonics 4, 846–851 (2017).

Djurišic, A. B.

Elazar, J. M.

Fishman, D. A.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

Frisbie, C. D.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional Group Imaging by Chemical Force Microscopy,” Science 265(5181), 2071–2074 (1994).
[PubMed]

Gallagher, A.

Gerber, C.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[PubMed]

Halas, N. J.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

Hecht, B.

B. Hecht, B. Sick, and U. P. Wild, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).

Hillenbrand, R.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-Specific Infrared Recognition of Single Sub-10 nm Particles by Substrate-Enhanced Scattering-Type Near-Field Microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[PubMed]

Huang, F.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

F. Huang, V. A. Tamma, Z. Mardy, J. Burdett, and H. K. Wickramasinghe, “Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces,” Sci. Rep. 5, 10610 (2015).
[PubMed]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).

Jahng, J.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

Jian, Z.

Z. Jian, D. Xing-chun, L. Jian-jun, and Z. Jun-wu, “Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting,” J. Nanopart. Res. 13, 953–958 (2011).

Jian-jun, L.

Z. Jian, D. Xing-chun, L. Jian-jun, and Z. Jun-wu, “Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting,” J. Nanopart. Res. 13, 953–958 (2011).

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

Jun-wu, Z.

Z. Jian, D. Xing-chun, L. Jian-jun, and Z. Jun-wu, “Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting,” J. Nanopart. Res. 13, 953–958 (2011).

Keilmann, F.

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[PubMed]

Kenny, T. W.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

Kleinman, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared Properties of Hexagonal Silicon Carbide,” Phys. Rev. 113, 127–132 (1959).

Kumar Wickramasinghe, H.

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[PubMed]

Kuo, M. K.

J. W. Liaw, M. K. Kuo, and C. N. Liao, “Plasmon Resonances of Spherical and Ellipsoidal Nanoparticles,” J. Electromagn. Waves Appl. 19, 1787–1794 (2005).

Ladani, F. T.

F. T. Ladani and E. O. Potma, “Dyadic Green’s function formalism for photoinduced forces in tip-sample nanojunctions,” Phys. Rev. B 95, 205440 (2017).

Li, Q.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

Li, X.

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

Li, Z.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

Liao, C. N.

J. W. Liaw, M. K. Kuo, and C. N. Liao, “Plasmon Resonances of Spherical and Ellipsoidal Nanoparticles,” J. Electromagn. Waves Appl. 19, 1787–1794 (2005).

Liaw, J. W.

J. W. Liaw, M. K. Kuo, and C. N. Liao, “Plasmon Resonances of Spherical and Ellipsoidal Nanoparticles,” J. Electromagn. Waves Appl. 19, 1787–1794 (2005).

Lieber, C. M.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional Group Imaging by Chemical Force Microscopy,” Science 265(5181), 2071–2074 (1994).
[PubMed]

Majewski, M. L.

Mardy, Z.

F. Huang, V. A. Tamma, Z. Mardy, J. Burdett, and H. K. Wickramasinghe, “Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces,” Sci. Rep. 5, 10610 (2015).
[PubMed]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269(5227), 1083–1085 (1995).
[PubMed]

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).

Nesbitt, D. J.

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[PubMed]

Nonnenmacher, M.

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58, 2921–2923 (1991).

Nordlander, P.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[PubMed]

E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3, 543–547 (2003).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

Nowak, D.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

Noy, A.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional Group Imaging by Chemical Force Microscopy,” Science 265(5181), 2071–2074 (1994).
[PubMed]

O’Boyle, M. P.

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58, 2921–2923 (1991).

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-Specific Infrared Recognition of Single Sub-10 nm Particles by Substrate-Enhanced Scattering-Type Near-Field Microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

Östling, D.

D. Östling, P. Apell, and A. Rosén, “Theory for Collective Resonances of the C 60 Molecule,” Europhys. Lett. 21, 539 (1993).

Pfafman, T.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

Potma, E. O.

F. T. Ladani and E. O. Potma, “Dyadic Green’s function formalism for photoinduced forces in tip-sample nanojunctions,” Phys. Rev. B 95, 205440 (2017).

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3, 543–547 (2003).

Quate, C. F.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

Rahmani, A.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[PubMed]

Rajapaksa, I.

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[PubMed]

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[PubMed]

Rakic, A. D.

Raschke, M. B.

H. U. Yang and M. B. Raschke, “Resonant optical gradient force interaction for nano-imaging and -spectroscopy,” New J. Phys. 18, 053042 (2016).

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

Ren, B.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

Rosén, A.

D. Östling, P. Apell, and A. Rosén, “Theory for Collective Resonances of the C 60 Molecule,” Europhys. Lett. 21, 539 (1993).

Rozsnyai, L. F.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional Group Imaging by Chemical Force Microscopy,” Science 265(5181), 2071–2074 (1994).
[PubMed]

Ruan, F.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

Rugar, D.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

Sick, B.

B. Hecht, B. Sick, and U. P. Wild, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).

Sidles, J. A.

J. A. Sidles, “Noninductive detection of single‐proton magnetic resonance,” Appl. Phys. Lett. 58, 2854–2856 (1991).

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared Properties of Hexagonal Silicon Carbide,” Phys. Rev. 113, 127–132 (1959).

Stipe, B. C.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

Stowe, T. D.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

Tamma, V. A.

F. Huang, V. A. Tamma, Z. Mardy, J. Burdett, and H. K. Wickramasinghe, “Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces,” Sci. Rep. 5, 10610 (2015).
[PubMed]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

Thomann, I.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[PubMed]

Tian, Z.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

Tretinnikov, O. N.

O. N. Tretinnikov, “IR spectroscopic study of the effect of polymer nanofilm thickness on its surface density,” J. Appl. Spectrosc. 75, 64–68 (2008).

Tumkur, T. U.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[PubMed]

Uenal, K.

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[PubMed]

Vlasova, E. N.

V. M. Zolotarev, B. Z. Volchek, and E. N. Vlasova, “Optical constants of industrial polymers in the IR region,” Opt. Spectrosc. 101, 716–723 (2006).

Volchek, B. Z.

V. M. Zolotarev, B. Z. Volchek, and E. N. Vlasova, “Optical constants of industrial polymers in the IR region,” Opt. Spectrosc. 101, 716–723 (2006).

Walsh, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared Properties of Hexagonal Silicon Carbide,” Phys. Rev. 113, 127–132 (1959).

Wickramasinghe, H. K.

F. Huang, V. A. Tamma, Z. Mardy, J. Burdett, and H. K. Wickramasinghe, “Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces,” Sci. Rep. 5, 10610 (2015).
[PubMed]

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[PubMed]

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269(5227), 1083–1085 (1995).
[PubMed]

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58, 2921–2923 (1991).

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).

Wild, U. P.

B. Hecht, B. Sick, and U. P. Wild, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).

Williams, C. C.

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).

Wilson, W. L.

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy,” ACS Photonics 4, 846–851 (2017).

Wrighton, M. S.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional Group Imaging by Chemical Force Microscopy,” Science 265(5181), 2071–2074 (1994).
[PubMed]

Xing-chun, D.

Z. Jian, D. Xing-chun, L. Jian-jun, and Z. Jun-wu, “Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting,” J. Nanopart. Res. 13, 953–958 (2011).

Xu, H.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

Yampolsky, S.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

Yang, H. U.

H. U. Yang and M. B. Raschke, “Resonant optical gradient force interaction for nano-imaging and -spectroscopy,” New J. Phys. 18, 053042 (2016).

Yang, X.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[PubMed]

Yang, Z.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

Yasumura, K. Y.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269(5227), 1083–1085 (1995).
[PubMed]

Zolotarev, V. M.

V. M. Zolotarev, B. Z. Volchek, and E. N. Vlasova, “Optical constants of industrial polymers in the IR region,” Opt. Spectrosc. 101, 716–723 (2006).

ACS Photonics (1)

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy,” ACS Photonics 4, 846–851 (2017).

Appl. Opt. (1)

Appl. Phys. Lett. (6)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58, 2921–2923 (1991).

J. A. Sidles, “Noninductive detection of single‐proton magnetic resonance,” Appl. Phys. Lett. 58, 2854–2856 (1991).

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[PubMed]

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[PubMed]

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106, 083113 (2015).

Chin. Sci. Bull. (1)

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55, 2635–2642 (2010).

Europhys. Lett. (1)

D. Östling, P. Apell, and A. Rosén, “Theory for Collective Resonances of the C 60 Molecule,” Europhys. Lett. 21, 539 (1993).

J. Appl. Phys. (1)

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).

J. Appl. Spectrosc. (1)

O. N. Tretinnikov, “IR spectroscopic study of the effect of polymer nanofilm thickness on its surface density,” J. Appl. Spectrosc. 75, 64–68 (2008).

J. Chem. Phys. (1)

B. Hecht, B. Sick, and U. P. Wild, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).

J. Electromagn. Waves Appl. (1)

J. W. Liaw, M. K. Kuo, and C. N. Liao, “Plasmon Resonances of Spherical and Ellipsoidal Nanoparticles,” J. Electromagn. Waves Appl. 19, 1787–1794 (2005).

J. Microelectromech. Syst. (1)

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9, 117–125 (2000).

J. Nanopart. Res. (1)

Z. Jian, D. Xing-chun, L. Jian-jun, and Z. Jun-wu, “Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting,” J. Nanopart. Res. 13, 953–958 (2011).

J. Opt. Soc. Am. A (1)

Nano Lett. (3)

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-Specific Infrared Recognition of Single Sub-10 nm Particles by Substrate-Enhanced Scattering-Type Near-Field Microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3, 543–547 (2003).

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced Force Mapping of Plasmonic Nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[PubMed]

New J. Phys. (1)

H. U. Yang and M. B. Raschke, “Resonant optical gradient force interaction for nano-imaging and -spectroscopy,” New J. Phys. 18, 053042 (2016).

Opt. Express (1)

Opt. Spectrosc. (1)

V. M. Zolotarev, B. Z. Volchek, and E. N. Vlasova, “Optical constants of industrial polymers in the IR region,” Opt. Spectrosc. 101, 716–723 (2006).

Philos Trans A Math Phys Eng Sci (1)

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[PubMed]

Phys. Rev. (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared Properties of Hexagonal Silicon Carbide,” Phys. Rev. 113, 127–132 (1959).

Phys. Rev. B (3)

F. T. Ladani and E. O. Potma, “Dyadic Green’s function formalism for photoinduced forces in tip-sample nanojunctions,” Phys. Rev. B 95, 205440 (2017).

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90, 155417 (2014).

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

Phys. Rev. Lett. (2)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[PubMed]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[PubMed]

Sci. Rep. (1)

F. Huang, V. A. Tamma, Z. Mardy, J. Burdett, and H. K. Wickramasinghe, “Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces,” Sci. Rep. 5, 10610 (2015).
[PubMed]

Science (3)

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional Group Imaging by Chemical Force Microscopy,” Science 265(5181), 2071–2074 (1994).
[PubMed]

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269(5227), 1083–1085 (1995).
[PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

Other (3)

H. K. Wickramasinghe and C. C. Williams, “Apertureless Near-Field Optical Microscope,” U.S. Patent No. 4 947 034, August 1990.

C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” (Institut für Angewandte Physik, 2002)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University 2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The configuration set up. Tip, with 10° half taper angle, is terminated by spherical section of 100 Å radius. In (a), the tip is coated by metal with different coating thicknesses (Tth), and the Si substrate (not shown) is coated by a sample with different sample coating thicknesses (Sth). The amplitude of the electric field is calculated along a - - a’ and b - - b’ line segments. In (b), a particle 50 Å radius is placed at a depth d within the sample. Arrows 1 and 2 indicate the sweeping direction of the particle. Tip-sample distance is 5 Å. The geometry is irradiated by standing wave with polarization parallel to the tip axis.

Fig. 2
Fig. 2

MST and pressure force (PF) calculated by COMSOL, and PF calculated by Mie analysis.

Fig. 3
Fig. 3

Ag solid tip illuminated by an incident field with pi/3 incident angle. The wavelength is 632.8 nm. The field enhancement Eenh = 16.

Fig. 4
Fig. 4

Gap-field enhancement (Eenh) (left column) and <(F)opt> (right column) as a function of Tth, where each curve represents specific Sth. (a), (b), and (c) correspond to different tip-coating materials: platinum (Pt), silver (Ag), and gold (Au). The incident wavelength is 10μm.

Fig. 5
Fig. 5

(a) Near-field distribution is calculated at Tth = 5 [nm]. The spatial confinement of the electric field calculated through a - - a’ segment (b) and vertically through b - - b’ segment (c) (cf. Fig. 1(a)). Each color represents different Tth. Sth is 30 [nm] and the tip-coating material is Au.

Fig. 6
Fig. 6

(a) < Fopt > as a function of PS absorption band (left) and the real ( α) and imaginary ( α) parts of PS polarizability (right). (b) < Fopt > as a function of PMMA absorption band (left), and α and α parts of PMMA polarizability (right). (c) < Fopt > calculated in the visible region for Au (left), and α and α parts of bulk (solid) and nanoparticle (dashed) Au polarizabilities (right).

Fig. 7
Fig. 7

(a) and (b) are the <(F)opt> calculated as a function of particle depth d (direction 2 (cf. Fig. 1(b))). (c) and (d) are (F)cont calculated while the particle is swept in direction 1 for different depths d. The particles are excited at resonance.

Fig. 8
Fig. 8

(F)cont at on (solid line) and off (dashed line) conditions for Au (a), PS (b), SiC (c).

Fig. 9
Fig. 9

Hertzian dipole.

Fig. 10
Fig. 10

Force calculated by COMSOL for PMMA (left) and PS (right) is compared to the one calculated using dipole approximation (Eq. (7). Forces are normalized.

Fig. 11
Fig. 11

Cross section of the simulated setup (not drawn to scale). The uncolored area (white) is air. Other colored areas are specified in the figure.

Fig. 12
Fig. 12

(a) Meshing distribution over the simulated domain. (b) Mesh density at the tip-sample region, and (d) is mesh density at the tip-sample gap. (c) Close look to the boundary mesh layers used to resolve the skin depth of the tip-coating-Au layer.

Tables (1)

Tables Icon

Table 1 Dielectric functions used to find Fcont (cf. Fig. 8) for ON and OFF resonance.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

< F opt t,s > = 1 2 Re{( p t,s * ·) E loc t,s }
E loc t,s = E inc + p s,t 2π ε m ε 0 r 3
p t,s = α t,s E loc t,s
< F opt > = < T (r,t)>·n(r) da
T = ε m ε 0 EE μ m μ 0 HH 1 2 ( ε m ε 0 E 2 μ m μ 0 H 2 ) I
E R =jηλ Idcos(θ) 4 π 2 R 3
< F opt,z >= 3 α t ' α s ' 2π z 4 E 0z 2

Metrics