Abstract

In this paper, a novel sensitivity amplification method for fiber-optic in-line Mach-Zehnder interferometer (MZI) sensors has been proposed and demonstrated. The sensitivity magnification is achieved through a modified Vernier-effect. Two cascaded in-line MZIs based on offset splicing of single mode fiber (SMF) have been used to verify the effect of sensitivity amplification. Vernier-effect is generated due to the small free spectral range (FSR) difference between the cascaded in-line MZIs. Frequency component corresponding to the envelope of the superimposed spectrum is extracted to take Inverse Fast Fourier Transform (IFFT). Thus we can obtain the envelope precisely from the messy superimposed spectrum. Experimental results show that a maximum sensitivity amplification factor of nearly 9 is realized. The proposed sensitivity amplification method is universal for the vast majority of in-line MZIs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vernier effect of two cascaded in-fiber Mach–Zehnder interferometers based on a spherical-shaped structure

Mingyang Xie, Huaping Gong, Jun Zhang, Chun-Liu Zhao, and Xinyong Dong
Appl. Opt. 58(23) 6204-6210 (2019)

Ultra-highly sensitive gas pressure sensor based on dual side-hole fiber interferometers with Vernier effect

Hongfeng Lin, Fufei Liu, Huiyong Guo, Ai Zhou, and Yutang Dai
Opt. Express 26(22) 28763-28772 (2018)

Ultrasensitive refractive index sensor based on enhanced Vernier effect through cascaded fiber core-offset pairs

Jiewen Li, Meng Zhang, Minggui Wan, Chunli Lin, Shihong Huang, Cuihong Liu, Qingping He, Xiaozhong Qiu, and Xiaohui Fang
Opt. Express 28(3) 4145-4155 (2020)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
    [PubMed]
  2. J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber mach-zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
    [PubMed]
  3. L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57(4), 39–43 (2014).
  4. X. Yu, X. Chen, D. Bu, J. Zhang, and S. Liu, “In-fiber modal interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 28(2), 189–192 (2015).
  5. Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
  6. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber mach–zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 5267 (2009).
  7. Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53(12), 2691–2695 (2014).
    [PubMed]
  8. X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
  9. J. Su, Z. Tong, Y. Cao, and P. Luan, “Double-parameters optical fiber sensor based on spherical structure and multimode fiber,” IEEE Photonics Technol. Lett. 27(4), 427– 430 (2015).
  10. H. Gong, M. Xiong, Z. Qian, C. L. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on mach–zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 1–9 (2015).
  11. W. Peng and X. Zhang, “Bent fiber interferometer,” J. Lightwave. Technol. 33(15), 3351– 3356 (2105).
  12. X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “High sensitivity balloon-like interferometer for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 28(13), 1485–1488 (2016).
  13. J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).
  14. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber mach-zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [PubMed]
  15. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006).
    [PubMed]
  16. Y. Lu, C. Shen, C. Zhong, and D. Chen, “Refractive index and temperature sensor based on double-pass m–z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).
  17. Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a mach-zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
    [PubMed]
  18. D. N. Wang, M. Yang, P. Lu, S. Liu, and Y. Wang, “Fiber in-line mach-zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
  19. D. N. Wang, M. Yang, P. Lu, S. Liu, and Y. Wang, “Fiber in-line mach-zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
  20. B. Wang, W. Zhang, Z. Bai, L. Zhang, T. Yan, and L. Chen, “Mach–zehnder interferometer based on interference of selective high-order core modes,” IEEE Photonics Technol. Lett. 28(1), 71–74 (2015).
  21. X. Liang, Z. Liu, H. Wei, Y. Li, and S. Jian, “Detection of liquid level with an mi-based fiber laser sensor using few-mode EMCF,” IEEE Photonics Technol. Lett. 27(8), 805–808 (2015).
  22. L. Jin, M. Y. Li, and J. J. He, “Highly-sensitive optical sensor using two cascaded-microring resonators with Vernier effect,” in Asia Communications and Photonics Conference, Technical Digest (TD) (Optical Society of America, 2009), paper TuM4.
  23. L. Jin, M. Li, and J. J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
    [PubMed]
  24. L. Jin, M. Y. Li, and J. J. He, “Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors,” J. Lightwave Technol. 30(12), 1994–2002 (2012).
  25. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [PubMed]
  26. R. Xu, S. L. P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).
  27. L. Zhang, P. Lu, L. Chen, C. Huang, D. Liu, and S. Jiang, “Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy,” Opt. Lett. 37(13), 2622–2624 (2012).
    [PubMed]
  28. Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
    [PubMed]
  29. P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic FabryPerot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
    [PubMed]
  30. P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic fabry-perot interferometers with vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
    [PubMed]
  31. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity fabry-perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [PubMed]
  32. P. Zhang, M. Tang, F. Gao, F. B. Zhu, Z. Zhao, and L. Duan, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
  33. Y. Zhao, P. Wang, R. Lv, and X. Liu, “Highly sensitive airflow sensor based on fabry–perot interferometer and vernier effect,” J. Lightwave Technol. 34(23), 5351–5356 (2016).
  34. L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).
  35. Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
  36. Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
    [PubMed]
  37. U. L. Block, V. Dangui, M. J. F. Digonnet, and M. M. Fejer, “Origin of apparent resonance mode splitting in bent long-period fiber gratings,” J. Lightwave Technol. 24(2), 1027–1034 (2006).

2105 (1)

W. Peng and X. Zhang, “Bent fiber interferometer,” J. Lightwave. Technol. 33(15), 3351– 3356 (2105).

2017 (1)

2016 (2)

Y. Zhao, P. Wang, R. Lv, and X. Liu, “Highly sensitive airflow sensor based on fabry–perot interferometer and vernier effect,” J. Lightwave Technol. 34(23), 5351–5356 (2016).

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “High sensitivity balloon-like interferometer for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 28(13), 1485–1488 (2016).

2015 (10)

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

X. Yu, X. Chen, D. Bu, J. Zhang, and S. Liu, “In-fiber modal interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 28(2), 189–192 (2015).

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[PubMed]

M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity fabry-perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[PubMed]

P. Zhang, M. Tang, F. Gao, F. B. Zhu, Z. Zhao, and L. Duan, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).

J. Su, Z. Tong, Y. Cao, and P. Luan, “Double-parameters optical fiber sensor based on spherical structure and multimode fiber,” IEEE Photonics Technol. Lett. 27(4), 427– 430 (2015).

H. Gong, M. Xiong, Z. Qian, C. L. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on mach–zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 1–9 (2015).

B. Wang, W. Zhang, Z. Bai, L. Zhang, T. Yan, and L. Chen, “Mach–zehnder interferometer based on interference of selective high-order core modes,” IEEE Photonics Technol. Lett. 28(1), 71–74 (2015).

X. Liang, Z. Liu, H. Wei, Y. Li, and S. Jian, “Detection of liquid level with an mi-based fiber laser sensor using few-mode EMCF,” IEEE Photonics Technol. Lett. 27(8), 805–808 (2015).

2014 (7)

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic FabryPerot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic fabry-perot interferometers with vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[PubMed]

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber mach-zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[PubMed]

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57(4), 39–43 (2014).

Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53(12), 2691–2695 (2014).
[PubMed]

Y. Lu, C. Shen, C. Zhong, and D. Chen, “Refractive index and temperature sensor based on double-pass m–z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).

Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a mach-zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[PubMed]

2013 (2)

X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).

2012 (4)

L. Jin, M. Y. Li, and J. J. He, “Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors,” J. Lightwave Technol. 30(12), 1994–2002 (2012).

R. Xu, S. L. P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).

L. Zhang, P. Lu, L. Chen, C. Huang, D. Liu, and S. Jiang, “Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy,” Opt. Lett. 37(13), 2622–2624 (2012).
[PubMed]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

2011 (1)

2010 (3)

2009 (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber mach–zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 5267 (2009).

2008 (1)

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

2007 (1)

2006 (2)

Araújo, F. M.

Bai, Z.

B. Wang, W. Zhang, Z. Bai, L. Zhang, T. Yan, and L. Chen, “Mach–zehnder interferometer based on interference of selective high-order core modes,” IEEE Photonics Technol. Lett. 28(1), 71–74 (2015).

Barnes, J.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Bienstman, P.

Block, U. L.

Bock, W.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Bogaerts, W.

Bu, D.

X. Yu, X. Chen, D. Bu, J. Zhang, and S. Liu, “In-fiber modal interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 28(2), 189–192 (2015).

Cao, Y.

J. Su, Z. Tong, Y. Cao, and P. Luan, “Double-parameters optical fiber sensor based on spherical structure and multimode fiber,” IEEE Photonics Technol. Lett. 27(4), 427– 430 (2015).

Chen, D.

Y. Lu, C. Shen, C. Zhong, and D. Chen, “Refractive index and temperature sensor based on double-pass m–z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).

Chen, L.

B. Wang, W. Zhang, Z. Bai, L. Zhang, T. Yan, and L. Chen, “Mach–zehnder interferometer based on interference of selective high-order core modes,” IEEE Photonics Technol. Lett. 28(1), 71–74 (2015).

L. Zhang, P. Lu, L. Chen, C. Huang, D. Liu, and S. Jiang, “Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy,” Opt. Lett. 37(13), 2622–2624 (2012).
[PubMed]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber mach–zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 5267 (2009).

Chen, X.

X. Yu, X. Chen, D. Bu, J. Zhang, and S. Liu, “In-fiber modal interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 28(2), 189–192 (2015).

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber mach-zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[PubMed]

Claes, T.

Dai, Y.

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).

Dangui, V.

Digonnet, M. J. F.

Dong, X.

H. Gong, M. Xiong, Z. Qian, C. L. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on mach–zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 1–9 (2015).

Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a mach-zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[PubMed]

Duan, L.

P. Zhang, M. Tang, F. Gao, F. B. Zhu, Z. Zhao, and L. Duan, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

Fabris, J. L.

Falate, R.

Fejer, M. M.

Feng, T.

X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).

Ferreira, L. A.

Fraser, J. M.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Frazão, O.

Fu, S.

Gao, F.

Gong, H.

H. Gong, M. Xiong, Z. Qian, C. L. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on mach–zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 1–9 (2015).

Greig, P.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

He, J. J.

Huang, C.

Jian, S.

X. Liang, Z. Liu, H. Wei, Y. Li, and S. Jian, “Detection of liquid level with an mi-based fiber laser sensor using few-mode EMCF,” IEEE Photonics Technol. Lett. 27(8), 805–808 (2015).

Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53(12), 2691–2695 (2014).
[PubMed]

Jiang, S.

Jin, L.

Kang, Z.

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber mach-zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[PubMed]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

Lang, C.

Lao, Z.

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57(4), 39–43 (2014).

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber mach-zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[PubMed]

Li, B.

Li, C.

Li, J.

X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).

Li, M.

Li, M. Y.

Li, X.

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).

Li, Y.

X. Liang, Z. Liu, H. Wei, Y. Li, and S. Jian, “Detection of liquid level with an mi-based fiber laser sensor using few-mode EMCF,” IEEE Photonics Technol. Lett. 27(8), 805–808 (2015).

Li, Z.

Liang, X.

X. Liang, Z. Liu, H. Wei, Y. Li, and S. Jian, “Detection of liquid level with an mi-based fiber laser sensor using few-mode EMCF,” IEEE Photonics Technol. Lett. 27(8), 805–808 (2015).

Liao, C.

Liu, D.

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[PubMed]

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57(4), 39–43 (2014).

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic FabryPerot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic fabry-perot interferometers with vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[PubMed]

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).

R. Xu, S. L. P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).

L. Zhang, P. Lu, L. Chen, C. Huang, D. Liu, and S. Jiang, “Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy,” Opt. Lett. 37(13), 2622–2624 (2012).
[PubMed]

Liu, S.

Liu, X.

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “High sensitivity balloon-like interferometer for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 28(13), 1485–1488 (2016).

Y. Zhao, P. Wang, R. Lv, and X. Liu, “Highly sensitive airflow sensor based on fabry–perot interferometer and vernier effect,” J. Lightwave Technol. 34(23), 5351–5356 (2016).

Liu, Y.

Liu, Z.

X. Liang, Z. Liu, H. Wei, Y. Li, and S. Jian, “Detection of liquid level with an mi-based fiber laser sensor using few-mode EMCF,” IEEE Photonics Technol. Lett. 27(8), 805–808 (2015).

Lu, P.

Lu, S. L. P.

R. Xu, S. L. P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).

Lu, W.

Lu, Y.

Y. Lu, C. Shen, C. Zhong, and D. Chen, “Refractive index and temperature sensor based on double-pass m–z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).

Luan, P.

J. Su, Z. Tong, Y. Cao, and P. Luan, “Double-parameters optical fiber sensor based on spherical structure and multimode fiber,” IEEE Photonics Technol. Lett. 27(4), 427– 430 (2015).

Luo, B.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Luo, Y.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[PubMed]

Lv, R.

Lv, R. Q.

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “High sensitivity balloon-like interferometer for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 28(13), 1485–1488 (2016).

Mao, L.

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57(4), 39–43 (2014).

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber mach–zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 5267 (2009).

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

Ning, T.

X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).

Ouyang, J.

Pan, W.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

Pei, L.

X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).

Peng, W.

W. Peng and X. Zhang, “Bent fiber interferometer,” J. Lightwave. Technol. 33(15), 3351– 3356 (2105).

Qian, Z.

H. Gong, M. Xiong, Z. Qian, C. L. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on mach–zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 1–9 (2015).

Qu, S.

Quan, M.

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

Santos, J. L.

Shao, L. Y.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Shen, C.

Y. Lu, C. Shen, C. Zhong, and D. Chen, “Refractive index and temperature sensor based on double-pass m–z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).

Shum, P. P.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber mach–zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 5267 (2009).

Su, J.

J. Su, Z. Tong, Y. Cao, and P. Luan, “Double-parameters optical fiber sensor based on spherical structure and multimode fiber,” IEEE Photonics Technol. Lett. 27(4), 427– 430 (2015).

Sun, B.

Sun, J.

Sun, Q.

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[PubMed]

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).

Tang, M.

Tian, J.

Tian, Z.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Tong, Z.

J. Su, Z. Tong, Y. Cao, and P. Luan, “Double-parameters optical fiber sensor based on spherical structure and multimode fiber,” IEEE Photonics Technol. Lett. 27(4), 427– 430 (2015).

Villatoro, J.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

Wang, B.

B. Wang, W. Zhang, Z. Bai, L. Zhang, T. Yan, and L. Chen, “Mach–zehnder interferometer based on interference of selective high-order core modes,” IEEE Photonics Technol. Lett. 28(1), 71–74 (2015).

Wang, D. N.

Wang, G.

Wang, J.

Wang, P.

Wang, Q.

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “High sensitivity balloon-like interferometer for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 28(13), 1485–1488 (2016).

Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a mach-zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[PubMed]

Wang, Y.

Wei, H.

X. Liang, Z. Liu, H. Wei, Y. Li, and S. Jian, “Detection of liquid level with an mi-based fiber laser sensor using few-mode EMCF,” IEEE Photonics Technol. Lett. 27(8), 805–808 (2015).

Wei, X.

Wen, X.

Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53(12), 2691–2695 (2014).
[PubMed]

X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).

Wo, J.

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).

Xiong, M.

H. Gong, M. Xiong, Z. Qian, C. L. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on mach–zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 1–9 (2015).

Xu, R.

R. Xu, S. L. P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).

Xu, Z.

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[PubMed]

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).

Yam, S. H.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Yan, T.

B. Wang, W. Zhang, Z. Bai, L. Zhang, T. Yan, and L. Chen, “Mach–zehnder interferometer based on interference of selective high-order core modes,” IEEE Photonics Technol. Lett. 28(1), 71–74 (2015).

Yang, K.

Yang, M.

Yao, Y.

Yin, G.

You, H.

X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).

Yu, X.

X. Yu, X. Chen, D. Bu, J. Zhang, and S. Liu, “In-fiber modal interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 28(2), 189–192 (2015).

Zhang, J.

X. Yu, X. Chen, D. Bu, J. Zhang, and S. Liu, “In-fiber modal interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 28(2), 189–192 (2015).

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57(4), 39–43 (2014).

Zhang, L.

Zhang, P.

Zhang, W.

B. Wang, W. Zhang, Z. Bai, L. Zhang, T. Yan, and L. Chen, “Mach–zehnder interferometer based on interference of selective high-order core modes,” IEEE Photonics Technol. Lett. 28(1), 71–74 (2015).

Zhang, X.

W. Peng and X. Zhang, “Bent fiber interferometer,” J. Lightwave. Technol. 33(15), 3351– 3356 (2105).

Zhang, Z.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Zhao, C. L.

H. Gong, M. Xiong, Z. Qian, C. L. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on mach–zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 1–9 (2015).

Zhao, Y.

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “High sensitivity balloon-like interferometer for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 28(13), 1485–1488 (2016).

Y. Zhao, P. Wang, R. Lv, and X. Liu, “Highly sensitive airflow sensor based on fabry–perot interferometer and vernier effect,” J. Lightwave Technol. 34(23), 5351–5356 (2016).

Zhao, Z.

P. Zhang, M. Tang, F. Gao, F. B. Zhu, Z. Zhao, and L. Duan, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).

Zhong, C.

Y. Lu, C. Shen, C. Zhong, and D. Chen, “Refractive index and temperature sensor based on double-pass m–z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).

Zhong, X.

Zhou, J.

Zhu, B.

Zhu, F. B.

P. Zhang, M. Tang, F. Gao, F. B. Zhu, Z. Zhao, and L. Duan, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).

Zou, X.

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Zubia, J.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber mach–zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 5267 (2009).

IEEE Photonics J. (2)

H. Gong, M. Xiong, Z. Qian, C. L. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on mach–zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 1–9 (2015).

P. Zhang, M. Tang, F. Gao, F. B. Zhu, Z. Zhao, and L. Duan, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).

IEEE Photonics Technol. Lett. (10)

R. Xu, S. L. P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).

X. Wen, T. Ning, H. You, J. Li, T. Feng, and L. Pei, “Dumbbell-shaped mach–zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).

J. Su, Z. Tong, Y. Cao, and P. Luan, “Double-parameters optical fiber sensor based on spherical structure and multimode fiber,” IEEE Photonics Technol. Lett. 27(4), 427– 430 (2015).

X. Yu, X. Chen, D. Bu, J. Zhang, and S. Liu, “In-fiber modal interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 28(2), 189–192 (2015).

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, and J. M. Fraser, “Refractive index sensing with mach–zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “High sensitivity balloon-like interferometer for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 28(13), 1485–1488 (2016).

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

Y. Lu, C. Shen, C. Zhong, and D. Chen, “Refractive index and temperature sensor based on double-pass m–z interferometer with an FBG,” IEEE Photonics Technol. Lett. 26(11), 1124–1127 (2014).

B. Wang, W. Zhang, Z. Bai, L. Zhang, T. Yan, and L. Chen, “Mach–zehnder interferometer based on interference of selective high-order core modes,” IEEE Photonics Technol. Lett. 28(1), 71–74 (2015).

X. Liang, Z. Liu, H. Wei, Y. Li, and S. Jian, “Detection of liquid level with an mi-based fiber laser sensor using few-mode EMCF,” IEEE Photonics Technol. Lett. 27(8), 805–808 (2015).

IEEE Sens. J. (1)

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).

J. Lightwave Technol. (3)

J. Lightwave. Technol. (1)

W. Peng and X. Zhang, “Bent fiber interferometer,” J. Lightwave. Technol. 33(15), 3351– 3356 (2105).

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, and W. Pan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Opt. Express (7)

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber mach-zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[PubMed]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[PubMed]

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[PubMed]

Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
[PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber mach-zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic FabryPerot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic fabry-perot interferometers with vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[PubMed]

Opt. Laser Technol. (1)

L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. Laser Technol. 57(4), 39–43 (2014).

Opt. Lett. (5)

Sensors (Basel) (1)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[PubMed]

Other (1)

L. Jin, M. Y. Li, and J. J. He, “Highly-sensitive optical sensor using two cascaded-microring resonators with Vernier effect,” in Asia Communications and Photonics Conference, Technical Digest (TD) (Optical Society of America, 2009), paper TuM4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic digraph of the cascaded two interferometers.
Fig. 2
Fig. 2 Working mechanism of the traditional spectrum interrogation of Vernier-effect. (a) Spectrum of the sensing interferometer; (b) Spectrum of the reference interferometer; (c) Superimposed spectrum of the cascaded sensors.
Fig. 3
Fig. 3 (a) Superimposed spectrum of the cascaded sensors based on two MIs constructed with 1:1 coupler and Fresnel reflection of fiber end face. And the red curve represents the envelope extracted by IFFT of the |fS –fR| frequency component; (b) Spatial frequency spectrum of the Superimposed spectrum. Inset Schematic configuration of the cascaded MIs.
Fig. 4
Fig. 4 Experimental setup of the sensing system based on cascaded in-line MZIs.
Fig. 5
Fig. 5 (a) Spatial frequency spectrum of the two MZIs, inset is the corresponding transmission spectrum. ; (b) Spatial frequency spectrum of the cascaded two MZIs, inset is the corresponding superimposed spectrum.
Fig. 6
Fig. 6 Superimposed spectrum of the cascaded sensors based on two in-line MZIs. And the black curve represents the envelope extracted.
Fig. 7
Fig. 7 (a) Transmission spectrum of the sensing MZIs with different temperature; (b) Wavelength shift of the attenuation dips near 1556nm; (c) Dip wavelength versus temperature and the fitted line.
Fig. 8
Fig. 8 (a) Wavelength shift of the envelope extracted from the superimposed spectrum under different temperature; (b) The relationship between the center wavelength shift of the envelope dip peak and the temperature.
Fig. 9
Fig. 9 (a) Interference fringe patterns of the sensing MZI with different curvature; (b) Relationship between dip wavelength and the curvature.
Fig. 10
Fig. 10 (a) Wavelength shift of the envelope extracted from the superimposed spectrum under different curvature; (b) The relationship between the center wavelength shift of the envelope dip and the curvature.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I R = A 1 + B 1 cos ( 2 π λ n Δ L R ) . I s = A 2 + B 2 cos ( 2 π λ n Δ L S )
E o u t = E i n { D 1 exp ( j 2 π λ n L R ) + D 2 exp ( j 2 π λ n ( L R + Δ L R ) ) } . { D 3 exp ( j 2 π λ n L S ) + D 4 exp ( j 2 π λ n ( L S + Δ L S ) ) }
I o u t = A 1 A 2 + A 1 B 2 cos ( 2 π λ n Δ L S ) + A 2 B 1 cos ( 2 π λ n Δ L R ) + 1 2 B 1 B 2 cos [ 2 π λ n ( Δ L S + Δ L R ) ] + 1 2 B 1 B 2 cos [ 2 π λ n ( Δ L S Δ L R ) ] .
F S R C = F S R R F S R S | F S R R F S R S | .
M = F S R R | F S R R F S R S | = Δ L S | Δ L R Δ L S | .
I e n v e l o p = B 1 B 2 cos [ 2 π λ n ( Δ L S Δ L R ) ] .
λ m = 2 n Δ L S 2 m + 1 .
Δ λ m = 2 2 m + 1 { [ ( n + Δ n ) ( Δ L S + δ Δ L S ) ] n L } λ m ( Δ n n + δ Δ L S Δ L S ) .
Δ λ m = 2 2 m + 1 { [ ( n + Δ n ) ( | Δ L S Δ L R | + δ Δ L S ) ] n | Δ L S Δ L R | } λ m ( Δ n n + δ Δ L S | Δ L S Δ L R | ) .
I S = A 1 + B 1 cos ( ω S 1 t ) + C 1 cos ( ω S 2 t ) I R = A 2 + B 2 cos ( ω R 1 t ) + C 2 cos ( ω R 2 t ) .
φ = 2 π λ ( n e f f c o n e f f c l i ) L .
f = ( n e f f c o n e f f c l a d ) L λ 2 .

Metrics