Abstract

This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

25 October 2017: A typographical correction was made to the author listing.


OSA Recommended Articles
Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system

Clayton S.-C. Yang, Eiei Brown, Eric Kumi-Barimah, Uwe Hommerich, Feng Jin, Yingqing Jia, Sudhir Trivedi, Arvind I. D’souza, Eric A. Decuir, Priyalal S. Wijewarnasuriya, and Alan C. Samuels
Appl. Opt. 54(33) 9695-9702 (2015)

Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury–cadmium–telluride linear array detection system

Clayton S.-C. Yang, Feng Jin, Sudhir Trivedi, Eiei Brown, Uwe Hommerich, Jacob B. Khurgin, and Alan C. Samuels
Appl. Opt. 55(32) 9166-9172 (2016)

Comparative studies of long-wave laser-induced breakdown spectroscopy emissions excited at 1.064 µm and eye-safe 1.574 µm

Ei E. Brown, Clayton S.-C Yang, Uwe Hommerich, Feng Jin, Sudhir B. Trivedi, and Alan C. Samuels
Opt. Express 25(7) 7238-7250 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
  2. R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).
  3. S. G. Buckley, H. A. Johnson, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20, 455–462 (2000).
  4. A. Whitehouse, “Laser-induced breakdown spectroscopy and its applications to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).
  5. A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
    [PubMed]
  6. A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
    [PubMed]
  7. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57, 1131–1140 (2002).
  8. M. Sabsabi and J. Bussiere, “Method and apparatus for rapid in situ analysis of preselected components of homogeneous solid compositions, especially pharmaceutical compositions,” US Patent 5781289 A. Filed 1996. Issued 1998.
  9. L. St-Onge, J.-F. Archambault, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy,” J. Pharm. Pharm. Sci. 8(2), 272–288 (2005).
    [PubMed]
  10. M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
    [PubMed]
  11. A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
    [PubMed]
  12. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
    [PubMed]
  13. J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62, 1405–1411 (2007).
  14. C. S.-C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
    [PubMed]
  15. C. S. C. Yang, E. E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy (Springf.) 23, 29–33 (2008).
  16. C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
    [PubMed]
  17. C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
    [PubMed]
  18. C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
    [PubMed]
  19. C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
    [PubMed]
  20. K. Morisseau and C. T. Rhodes, Encyclopedia of Pharmaceutical Technology, 1 (Taylor and Francis, 1999), pp. 357–370.
  21. H. W. Siesler, Y. Ozaki, S. Kawata, and H. Heise, Near-Infrared Spectroscopy (VCH Weinheim, 2002).
  22. S. Luo, J. Feng, and K. M. Ng, “Large scale synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals via a one-pot pyrolysis reaction,” CrystEngComm 16, 9236–9244 (2014).
  23. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, “NIST atomic spectra database,” (version 5.2) (2014).
  24. A. C. Woods, C. G. Parigger, and J. O. Hornkohl, “Measurement and analysis of titanium monoxide spectra in laser-induced plasma,” Opt. Lett. 37(24), 5139–5141 (2012).
    [PubMed]
  25. E. N. Lewis, E. Lee, and L. H. Kidder, “Combining imaging and spectroscopy: solving problems with near infrared chemical imaging,” Micros. Today 12, 8–12 (2004).
  26. T. Priyanka, V. U. M. Rao, and A. Ajitha, “A review on laser-induced breakdown spectroscopy,” International Journal of Pharmaceutical Research & Analysis 4, 335–340 (2014).
  27. M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8(4), E103 (2007).
    [PubMed]
  28. K. A. Saum and W. M. Benesch, “Infrared electronic emission spectrum of nitrogen,” Appl. Opt. 9(1), 195–200 (1970).
    [PubMed]
  29. L. C. Bichara, H. E. Lanús, E. G. Ferrer, M. B. Gramajo, and S. A. Brandán, “Vibrational study and force field of the citric acid dimer based on the SQM methodology,” Adv. Phys. Chem. 347072, 1–10 (2011).
  30. F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).
  31. C. Pasquini, “Near infrared spectroscopy: fundamentals, practical aspects and analytical applications,” J. Braz. Chem. Soc. 14, 198–219 (2003).
  32. P. Merckle and K.-A. Kovar, “Assay of Effervescent Tablets by Near-Infrared Spectroscopy in Transmittance and Reflectance Mode: Acetylsalicylic Acid in Mono and Combination Formulations,” J. Pharm. Biomed. Anal. 17(3), 365–374 (1998).
    [PubMed]

2015 (1)

2014 (3)

C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[PubMed]

S. Luo, J. Feng, and K. M. Ng, “Large scale synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals via a one-pot pyrolysis reaction,” CrystEngComm 16, 9236–9244 (2014).

T. Priyanka, V. U. M. Rao, and A. Ajitha, “A review on laser-induced breakdown spectroscopy,” International Journal of Pharmaceutical Research & Analysis 4, 335–340 (2014).

2012 (2)

2011 (2)

L. C. Bichara, H. E. Lanús, E. G. Ferrer, M. B. Gramajo, and S. A. Brandán, “Vibrational study and force field of the citric acid dimer based on the SQM methodology,” Adv. Phys. Chem. 347072, 1–10 (2011).

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

2008 (2)

C. S. C. Yang, E. E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy (Springf.) 23, 29–33 (2008).

C. S.-C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[PubMed]

2007 (3)

C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[PubMed]

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62, 1405–1411 (2007).

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8(4), E103 (2007).
[PubMed]

2006 (2)

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

A. Whitehouse, “Laser-induced breakdown spectroscopy and its applications to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

2005 (2)

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).

L. St-Onge, J.-F. Archambault, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy,” J. Pharm. Pharm. Sci. 8(2), 272–288 (2005).
[PubMed]

2004 (2)

E. N. Lewis, E. Lee, and L. H. Kidder, “Combining imaging and spectroscopy: solving problems with near infrared chemical imaging,” Micros. Today 12, 8–12 (2004).

A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
[PubMed]

2003 (3)

2002 (2)

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[PubMed]

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57, 1131–1140 (2002).

2000 (1)

S. G. Buckley, H. A. Johnson, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20, 455–462 (2000).

1998 (1)

P. Merckle and K.-A. Kovar, “Assay of Effervescent Tablets by Near-Infrared Spectroscopy in Transmittance and Reflectance Mode: Acetylsalicylic Acid in Mono and Combination Formulations,” J. Pharm. Biomed. Anal. 17(3), 365–374 (1998).
[PubMed]

1970 (1)

1952 (1)

F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).

Ajitha, A.

T. Priyanka, V. U. M. Rao, and A. Ajitha, “A review on laser-induced breakdown spectroscopy,” International Journal of Pharmaceutical Research & Analysis 4, 335–340 (2014).

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

Archambault, J.-F.

L. St-Onge, J.-F. Archambault, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy,” J. Pharm. Pharm. Sci. 8(2), 272–288 (2005).
[PubMed]

Barman, I.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

Baudelet, M.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

Béchard, S.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[PubMed]

Benesch, W. M.

Bichara, L. C.

L. C. Bichara, H. E. Lanús, E. G. Ferrer, M. B. Gramajo, and S. A. Brandán, “Vibrational study and force field of the citric acid dimer based on the SQM methodology,” Adv. Phys. Chem. 347072, 1–10 (2011).

Brandán, S. A.

L. C. Bichara, H. E. Lanús, E. G. Ferrer, M. B. Gramajo, and S. A. Brandán, “Vibrational study and force field of the citric acid dimer based on the SQM methodology,” Adv. Phys. Chem. 347072, 1–10 (2011).

Brown, E.

Brown, E. E.

Buckley, S. G.

S. G. Buckley, H. A. Johnson, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20, 455–462 (2000).

Burgess, S.

D’souza, A. I.

De Lucia, F. C.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[PubMed]

Debnath, S.

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8(4), E103 (2007).
[PubMed]

Decuir, E. A.

DeLucia, F. C.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62, 1405–1411 (2007).

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[PubMed]

Dingari, N. C.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

Feng, J.

S. Luo, J. Feng, and K. M. Ng, “Large scale synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals via a one-pot pyrolysis reaction,” CrystEngComm 16, 9236–9244 (2014).

Ferrer, E. G.

L. C. Bichara, H. E. Lanús, E. G. Ferrer, M. B. Gramajo, and S. A. Brandán, “Vibrational study and force field of the citric acid dimer based on the SQM methodology,” Adv. Phys. Chem. 347072, 1–10 (2011).

Frejafon, E.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

French, P. D.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).

Gottfried, J. L.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62, 1405–1411 (2007).

Gramajo, M. B.

L. C. Bichara, H. E. Lanús, E. G. Ferrer, M. B. Gramajo, and S. A. Brandán, “Vibrational study and force field of the citric acid dimer based on the SQM methodology,” Adv. Phys. Chem. 347072, 1–10 (2011).

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

Hahn, D. W.

S. G. Buckley, H. A. Johnson, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20, 455–462 (2000).

Harmon, R. S.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[PubMed]

Hencken, K. R.

S. G. Buckley, H. A. Johnson, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20, 455–462 (2000).

Hommerich, U.

Hommerich, U. H.

Hornkohl, J. O.

Jia, Y.

Jin, F.

Johnson, H. A.

S. G. Buckley, H. A. Johnson, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20, 455–462 (2000).

Kidder, L. H.

E. N. Lewis, E. Lee, and L. H. Kidder, “Combining imaging and spectroscopy: solving problems with near infrared chemical imaging,” Micros. Today 12, 8–12 (2004).

Kirsch, J.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[PubMed]

Kovar, K.-A.

P. Merckle and K.-A. Kovar, “Assay of Effervescent Tablets by Near-Infrared Spectroscopy in Transmittance and Reflectance Mode: Acetylsalicylic Acid in Mono and Combination Formulations,” J. Pharm. Biomed. Anal. 17(3), 365–374 (1998).
[PubMed]

Kumar, A.

Kumi-Barimah, E.

Kwong, E.

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8(4), E103 (2007).
[PubMed]

L. St-Onge, J.-F. Archambault, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy,” J. Pharm. Pharm. Sci. 8(2), 272–288 (2005).
[PubMed]

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57, 1131–1140 (2002).

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

Lanús, H. E.

L. C. Bichara, H. E. Lanús, E. G. Ferrer, M. B. Gramajo, and S. A. Brandán, “Vibrational study and force field of the citric acid dimer based on the SQM methodology,” Adv. Phys. Chem. 347072, 1–10 (2011).

Lee, E.

E. N. Lewis, E. Lee, and L. H. Kidder, “Combining imaging and spectroscopy: solving problems with near infrared chemical imaging,” Micros. Today 12, 8–12 (2004).

Lewis, E. N.

E. N. Lewis, E. Lee, and L. H. Kidder, “Combining imaging and spectroscopy: solving problems with near infrared chemical imaging,” Micros. Today 12, 8–12 (2004).

Luo, S.

S. Luo, J. Feng, and K. M. Ng, “Large scale synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals via a one-pot pyrolysis reaction,” CrystEngComm 16, 9236–9244 (2014).

Madamba, M. C.

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8(4), E103 (2007).
[PubMed]

Manoj Kumar, G.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

McNesby, K. L.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[PubMed]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[PubMed]

Merckle, P.

P. Merckle and K.-A. Kovar, “Assay of Effervescent Tablets by Near-Infrared Spectroscopy in Transmittance and Reflectance Mode: Acetylsalicylic Acid in Mono and Combination Formulations,” J. Pharm. Biomed. Anal. 17(3), 365–374 (1998).
[PubMed]

Miller, F. A.

F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).

Miziolek, A. W.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62, 1405–1411 (2007).

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[PubMed]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[PubMed]

Mowery, M. D.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[PubMed]

Mullett, W. M.

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8(4), E103 (2007).
[PubMed]

Munson, C. A.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62, 1405–1411 (2007).

Myakalwar, A. K.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

Ng, K. M.

S. Luo, J. Feng, and K. M. Ng, “Large scale synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals via a one-pot pyrolysis reaction,” CrystEngComm 16, 9236–9244 (2014).

Parigger, C. G.

Pasquini, C.

C. Pasquini, “Near infrared spectroscopy: fundamentals, practical aspects and analytical applications,” J. Braz. Chem. Soc. 14, 198–219 (2003).

Prem Kiran, P.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

Priyanka, T.

T. Priyanka, V. U. M. Rao, and A. Ajitha, “A review on laser-induced breakdown spectroscopy,” International Journal of Pharmaceutical Research & Analysis 4, 335–340 (2014).

Rao, V. U. M.

T. Priyanka, V. U. M. Rao, and A. Ajitha, “A review on laser-induced breakdown spectroscopy,” International Journal of Pharmaceutical Research & Analysis 4, 335–340 (2014).

Razaghi, A.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[PubMed]

Reed, R. A.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[PubMed]

Sabsabi, M.

L. St-Onge, J.-F. Archambault, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy,” J. Pharm. Pharm. Sci. 8(2), 272–288 (2005).
[PubMed]

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57, 1131–1140 (2002).

Samuels, A. C.

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
[PubMed]

C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[PubMed]

C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
[PubMed]

C. S.-C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[PubMed]

C. S. C. Yang, E. E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy (Springf.) 23, 29–33 (2008).

C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[PubMed]

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[PubMed]

Saum, K. A.

Sing, R.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[PubMed]

Singh, J. P.

Snyder, A. P.

Sreedhar, S.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

St-Onge, L.

L. St-Onge, J.-F. Archambault, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy,” J. Pharm. Pharm. Sci. 8(2), 272–288 (2005).
[PubMed]

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57, 1131–1140 (2002).

Tewari, S. P.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

Trivedi, S.

Trivedi, S. B.

Vadas, E. B.

L. St-Onge, J.-F. Archambault, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy,” J. Pharm. Pharm. Sci. 8(2), 272–288 (2005).
[PubMed]

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57, 1131–1140 (2002).

Venugopal Rao, S.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

Walters, R.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).

Whitehouse, A.

A. Whitehouse, “Laser-induced breakdown spectroscopy and its applications to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

Wijewarnasuriya, P. S.

Wilkins, C. H.

F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).

Winkel, R. J.

Wolf, J.-P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

Woods, A. C.

Yang, C. S. C.

C. S. C. Yang, E. E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy (Springf.) 23, 29–33 (2008).

C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[PubMed]

Yang, C. S.-C.

Yu, J.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

Yueh, F. Y.

AAPS PharmSciTech (1)

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8(4), E103 (2007).
[PubMed]

Adv. Phys. Chem. (1)

L. C. Bichara, H. E. Lanús, E. G. Ferrer, M. B. Gramajo, and S. A. Brandán, “Vibrational study and force field of the citric acid dimer based on the SQM methodology,” Adv. Phys. Chem. 347072, 1–10 (2011).

Anal. Chem. (1)

F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).

Appl. Spectrosc. (4)

CrystEngComm (1)

S. Luo, J. Feng, and K. M. Ng, “Large scale synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals via a one-pot pyrolysis reaction,” CrystEngComm 16, 9236–9244 (2014).

Geochem. Explor. Environ. Anal. (1)

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21–28 (2005).

International Journal of Pharmaceutical Research & Analysis (1)

T. Priyanka, V. U. M. Rao, and A. Ajitha, “A review on laser-induced breakdown spectroscopy,” International Journal of Pharmaceutical Research & Analysis 4, 335–340 (2014).

J. Braz. Chem. Soc. (1)

C. Pasquini, “Near infrared spectroscopy: fundamentals, practical aspects and analytical applications,” J. Braz. Chem. Soc. 14, 198–219 (2003).

J. Pharm. Biomed. Anal. (2)

P. Merckle and K.-A. Kovar, “Assay of Effervescent Tablets by Near-Infrared Spectroscopy in Transmittance and Reflectance Mode: Acetylsalicylic Acid in Mono and Combination Formulations,” J. Pharm. Biomed. Anal. 17(3), 365–374 (1998).
[PubMed]

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[PubMed]

J. Pharm. Pharm. Sci. (1)

L. St-Onge, J.-F. Archambault, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy,” J. Pharm. Pharm. Sci. 8(2), 272–288 (2005).
[PubMed]

Micros. Today (1)

E. N. Lewis, E. Lee, and L. H. Kidder, “Combining imaging and spectroscopy: solving problems with near infrared chemical imaging,” Micros. Today 12, 8–12 (2004).

Opt. Lett. (1)

Spectrochim. Acta B At. Spectrosc. (2)

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57, 1131–1140 (2002).

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62, 1405–1411 (2007).

Spectroscopy (Springf.) (1)

C. S. C. Yang, E. E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy (Springf.) 23, 29–33 (2008).

Spectroscopy Europe (1)

A. Whitehouse, “Laser-induced breakdown spectroscopy and its applications to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

Talanta (1)

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[PubMed]

Waste Manag. (1)

S. G. Buckley, H. A. Johnson, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20, 455–462 (2000).

Other (4)

M. Sabsabi and J. Bussiere, “Method and apparatus for rapid in situ analysis of preselected components of homogeneous solid compositions, especially pharmaceutical compositions,” US Patent 5781289 A. Filed 1996. Issued 1998.

A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, “NIST atomic spectra database,” (version 5.2) (2014).

K. Morisseau and C. T. Rhodes, Encyclopedia of Pharmaceutical Technology, 1 (Taylor and Francis, 1999), pp. 357–370.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. Heise, Near-Infrared Spectroscopy (VCH Weinheim, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The combined UVN LIBS and LWIR LIBS MCT linear array detection system.

Fig. 2
Fig. 2

Brimrose solid-state Luminar 5030 analyzer.

Fig. 3
Fig. 3

The emission spectra of Tylenol Arthritis Pain tablet (a) in the UVN region (shown between 400 to 900 nm) (b) in the LWIR region. The FTIR absorption spectra of key inactive ingredients are also plotted in (b): HPMC (red), steric acid (blue).

Fig. 4
Fig. 4

The emission spectra of Tylenol Arthritis Pain tablet with coating layer removed (a) in the UVN region (shown between 400 to 900 nm) (b) in the LWIR region. The FTIR absorption spectra of acetaminophen (red) is also plotted in (b).

Fig. 5
Fig. 5

NIR spectra (a) and their second derivatives (b) measured from the Tylenol Arthritis Pain tablet before (black line) and after coating removal (red lines).

Fig. 6
Fig. 6

The simultaneous UVN (a) + LWIR (b) LIBS spectra of each of the seven consecutive laser pulses (from 1st: black line to 7th: purple line) firing on the same Tylenol tablet surface location.

Fig. 7
Fig. 7

The emission spectra of Bufferin 325 mg tablet (a) in the visible region (b) in the LWIR region. The FTIR absorption spectra of key inactive ingredients are also plotted in (b): HPMC (red), citric acid (green), dibasic sodium phosphate (blue), and poly-ethylene glycol (magenta).

Fig. 8
Fig. 8

The emission spectra of Bufferin 325 mg tablet with coating layer removed (a) in the UVN region (shown between 400 to 900 nm) (b) in the LWIR region. The FTIR absorption spectra of key antacid buffers are also plotted in (b): MgCO3 (red) and CaCO3 (blue).

Fig. 9
Fig. 9

The emission spectra of the center core of a Bufferin 325 mg tablet (a) in the UVN region (shown between 400 to 900 nm) (b) in the LWIR region. The FTIR absorption spectra of aspirin (acetylsalicylic acid) (red) is also plotted in (b).

Fig. 10
Fig. 10

NIR spectra (a) and their second derivatives (b) measured from the Bufferin 325 mg tablet “as is” ((a): black solid line; (b): black dashed line), after coating removal (red lines), and revealing the center core (blue line).

Fig. 11
Fig. 11

The simultaneous UVN (a) + LWIR (b) LIBS spectra of each of the seven consecutive laser pulses (from 1st: purple line to 7th: black line) firing on the same Bufferin 325 mg tablet surface location.

Metrics