Abstract

Dual-polarization interferometric fiber optic gyroscope (IFOG) is a novel scheme in which the polarization nonreciprocal (PN) phase error of the two orthogonal polarizations can be optically compensated. In this work, we investigate the effective of PN phase error compensation under varying temperature. It is proved that, the thermally induced strain deforms the fiber, and results in perturbations on the birefringence and polarization cross coupling which degrades the IFOG’s stability. A wave propagation model and analytical expressions of PN phase error are derived by using coupled-wave equation and Jones matrix. We theoretically and experimentally verify that, although the single-mode (SM) and polarization-maintaining (PM) fiber coils behave different owing to their intrinsic properties of wave propagation, the thermal strain induced PN phase error can still be compensated under slow and adiabatic temperature variations. This could be a promising feature to overcome the temperature fragility of IFOG.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization nonreciprocity suppression of dual-polarization fiber-optic gyroscope under temperature variation

Ping Lu, Zinan Wang, Rongya Luo, Dayu Zhao, Chao Peng, and Zhengbin Li
Opt. Lett. 40(8) 1826-1829 (2015)

Investigation of residual core ellipticity induced nonreciprocity in air-core photonic bandgap fiber optical gyroscope

Xiaobin Xu, Zuchen Zhang, Zhihao Zhang, Jing Jin, and Ningfang Song
Opt. Express 22(22) 27228-27235 (2014)

Nonreciprocal phase shift caused by magnetic-thermal coupling of a polarization maintaining fiber optic gyroscope

Dengwei Zhang, Yuxiang Zhao, Wenlan Fu, Wenqing Zhou, Cheng Liu, Xiaowu Shu, and Shuangliang Che
Opt. Lett. 39(6) 1382-1385 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. Vali and R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15(5), 1099–1100 (1976).
    [Crossref] [PubMed]
  2. Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
    [Crossref]
  3. H. C. Lefèvre, The Fiber-Optic Gyroscope, 2nd. ed. (Artech House, 2014).
  4. G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
    [Crossref]
  5. J. Napoli, “20 years of KVH fiber optic gyro technology,” Proc. SPIE 9852, 98520A (2016).
  6. G. A. Pavlath, “Fiber optic gyros from research to production,” Proc. SPIE 9852, 985205 (2016).
    [Crossref]
  7. S. Mitani, T. Mizutani, and S. Sakai, “Current status of fiber optic gyro efforts for space applications in Japan,” Proc. SPIE 9852, 985208 (2016).
    [Crossref]
  8. S. Minakuchi, T. Sanada, N. Takeda, S. Mitani, T. Mizutani, Y. Sasaki, and K. Shinozaki, “Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application,” J. Lightwave Technol. 33(12), 2658–2662 (2015).
    [Crossref]
  9. Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.
  10. Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
    [Crossref]
  11. H. C. Lefèvre, “Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is!” Proc. SPIE 9852, 985203 (2016).
    [Crossref]
  12. H. C. Lefèvre, “The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” Comptes Rendus Physique 15(10), 851–858 (2014).
    [Crossref]
  13. D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19(5), 654–655 (1980).
    [Crossref] [PubMed]
  14. F. Mohr and P. Kiesel, “Thermal sensitivity Of sensing coils for fibre gyroscopes,” Proc. SPIE 0514, 305–308 (1984).
    [Crossref]
  15. N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” Proc. SPIE 0412, 268–271 (1983).
    [Crossref]
  16. M. Chomát, “Efficient suppression of thermally induced nonreciprocity in fiber-optic Sagnac interferometers with novel double-layer winding,” Appl. Opt. 32(13), 2289–2291 (1993).
    [Crossref] [PubMed]
  17. P. B. Ruffin, C. M. Lofts, C. C. Sung, and J. L. Page, “Reduction of nonreciprocity noise in wound fiber optic interferometers,” Opt. Eng 33(8), 2675–2679 (1994).
    [Crossref]
  18. C. M. Lofts, P. B. Ruffin, M. D. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng 34(10), 2856–2863 (1995).
    [Crossref]
  19. F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
    [Crossref]
  20. N. Lagakos, J. A. Bucaro, and J. Jarzynski, “Temperature-induced optical phase shifts in fibers,” Appl. Opt. 20(13), 2305–2308 (1981).
    [Crossref] [PubMed]
  21. F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elasto-optic interactions in the sensor fiber,” Proc. SPIE 5502, 410–413 (2004).
    [Crossref]
  22. X. Li, W. Ling, Y. Wei, and Z. Xu, “Three-dimensional model of thermal-induced optical phase shifts in rotation sensing,” Chin. Opt. Lett. 13(9), 090603 (2015).
    [Crossref]
  23. S. Ogut, B. Osunluk, and E. Ozbay, “Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding,” Proc. SPIE 10208, 1020806 (2017).
    [Crossref]
  24. Yi Yang, Zinan Wang, and Zhengbin Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37(14), 2841–2843 (2012).
    [Crossref] [PubMed]
  25. Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photon. J. 6(1), 7100208 (2014).
    [Crossref]
  26. Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, C. Peng, and Z. Li, “Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration,” Opt. Lett. 39(8), 2463–2466 (2014).
    [Crossref] [PubMed]
  27. Z. Wang, Y. Yang, P. Lu, C. Liu, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “Optically compensated polarization reciprocity in interferometric fiber-optic gyroscopes,” Opt. Express 22(5), 4908–4919 (2014).
    [Crossref] [PubMed]
  28. Z. Wang, Dual-Polarization Two-Port Fiber-Optic Gyroscope(Springer, 2017).
    [Crossref]
  29. B. Szafraniec and G. A. Sanders, “Theory of polarization evolution in interferometric fiber-optic depolarized gyros,” J. Lightwave Technol. 17(4), 579–590 (1999).
    [Crossref]
  30. P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
    [Crossref]
  31. P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope With double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
    [Crossref]
  32. P. Lu, Z. Wang, R. Luo, D. Zhao, C. Peng, and Z. Li, “Polarization nonreciprocity suppression of dual-polarization fiber-optic gyroscope under temperature variation,” Opt. Lett. 40(80), 1826–1829 (2015).
    [Crossref] [PubMed]
  33. J. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. 17(11), 1041–1051 (1981).
    [Crossref]
  34. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004).
    [Crossref] [PubMed]
  35. J. Sakai and T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. 18(11), 1899–1909 (1982).
    [Crossref]
  36. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994).
    [Crossref]
  37. S. L. A. Carrara, B. Y. Kim, and H. J. Shaw, “Elasto-optic alignment of birefringent axes in polarization-holding optical fiber,” Opt. Lett. 11(7), 470–472 (1986).
    [Crossref] [PubMed]
  38. M. Isubokawa and Y. Sasaki, “Limitation of transmission distance and capacity due to polarisation dispersion in a lightwave system,” Electron. Lett. 24(6), 350–352 (1988).
    [Crossref]

2017 (3)

S. Ogut, B. Osunluk, and E. Ozbay, “Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding,” Proc. SPIE 10208, 1020806 (2017).
[Crossref]

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope With double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

2016 (6)

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

J. Napoli, “20 years of KVH fiber optic gyro technology,” Proc. SPIE 9852, 98520A (2016).

G. A. Pavlath, “Fiber optic gyros from research to production,” Proc. SPIE 9852, 985205 (2016).
[Crossref]

S. Mitani, T. Mizutani, and S. Sakai, “Current status of fiber optic gyro efforts for space applications in Japan,” Proc. SPIE 9852, 985208 (2016).
[Crossref]

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

H. C. Lefèvre, “Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is!” Proc. SPIE 9852, 985203 (2016).
[Crossref]

2015 (3)

2014 (5)

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photon. J. 6(1), 7100208 (2014).
[Crossref]

Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, C. Peng, and Z. Li, “Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration,” Opt. Lett. 39(8), 2463–2466 (2014).
[Crossref] [PubMed]

Z. Wang, Y. Yang, P. Lu, C. Liu, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “Optically compensated polarization reciprocity in interferometric fiber-optic gyroscopes,” Opt. Express 22(5), 4908–4919 (2014).
[Crossref] [PubMed]

H. C. Lefèvre, “The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” Comptes Rendus Physique 15(10), 851–858 (2014).
[Crossref]

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

2012 (1)

2004 (2)

F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elasto-optic interactions in the sensor fiber,” Proc. SPIE 5502, 410–413 (2004).
[Crossref]

D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004).
[Crossref] [PubMed]

1999 (1)

1996 (1)

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
[Crossref]

1995 (1)

C. M. Lofts, P. B. Ruffin, M. D. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng 34(10), 2856–2863 (1995).
[Crossref]

1994 (2)

W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994).
[Crossref]

P. B. Ruffin, C. M. Lofts, C. C. Sung, and J. L. Page, “Reduction of nonreciprocity noise in wound fiber optic interferometers,” Opt. Eng 33(8), 2675–2679 (1994).
[Crossref]

1993 (1)

1988 (1)

M. Isubokawa and Y. Sasaki, “Limitation of transmission distance and capacity due to polarisation dispersion in a lightwave system,” Electron. Lett. 24(6), 350–352 (1988).
[Crossref]

1986 (1)

1984 (1)

F. Mohr and P. Kiesel, “Thermal sensitivity Of sensing coils for fibre gyroscopes,” Proc. SPIE 0514, 305–308 (1984).
[Crossref]

1983 (1)

N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” Proc. SPIE 0412, 268–271 (1983).
[Crossref]

1982 (1)

J. Sakai and T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. 18(11), 1899–1909 (1982).
[Crossref]

1981 (2)

J. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. 17(11), 1041–1051 (1981).
[Crossref]

N. Lagakos, J. A. Bucaro, and J. Jarzynski, “Temperature-induced optical phase shifts in fibers,” Appl. Opt. 20(13), 2305–2308 (1981).
[Crossref] [PubMed]

1980 (1)

1976 (1)

Abdul’minov, I. B.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Arrizon, A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Belashenko, A. V.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Bucaro, J. A.

Carrara, S. L. A.

Chomát, M.

Fedorov, V. A.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Frigo, N. J.

N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” Proc. SPIE 0412, 268–271 (1983).
[Crossref]

Guan, L.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope With double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

Guang, X.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope With double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

He, C.

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

Ho, W.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Honthaas, J.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

Huang, W. P.

Isubokawa, M.

M. Isubokawa and Y. Sasaki, “Limitation of transmission distance and capacity due to polarisation dispersion in a lightwave system,” Electron. Lett. 24(6), 350–352 (1988).
[Crossref]

Jarzynski, J.

Kang, J. U.

Kiesel, P.

F. Mohr and P. Kiesel, “Thermal sensitivity Of sensing coils for fibre gyroscopes,” Proc. SPIE 0514, 305–308 (1984).
[Crossref]

Kim, B. Y.

Kim, D. H.

Kimura, T.

J. Sakai and T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. 18(11), 1899–1909 (1982).
[Crossref]

J. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. 17(11), 1041–1051 (1981).
[Crossref]

Korkishko, Y. N.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Kostritskii, S. M.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Lagakos, N.

Latyntsev, S. V.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Lefèvre, H.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

Lefèvre, H. C.

H. C. Lefèvre, “Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is!” Proc. SPIE 9852, 985203 (2016).
[Crossref]

H. C. Lefèvre, “The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” Comptes Rendus Physique 15(10), 851–858 (2014).
[Crossref]

H. C. Lefèvre, The Fiber-Optic Gyroscope, 2nd. ed. (Artech House, 2014).

Li, G.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope With double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

Li, X.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope With double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

X. Li, W. Ling, Y. Wei, and Z. Xu, “Three-dimensional model of thermal-induced optical phase shifts in rotation sensing,” Chin. Opt. Lett. 13(9), 090603 (2015).
[Crossref]

Li, Y.

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photon. J. 6(1), 7100208 (2014).
[Crossref]

Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, C. Peng, and Z. Li, “Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration,” Opt. Lett. 39(8), 2463–2466 (2014).
[Crossref] [PubMed]

Li, Z.

Li, Zhengbin

Ling, W.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

X. Li, W. Ling, Y. Wei, and Z. Xu, “Three-dimensional model of thermal-induced optical phase shifts in rotation sensing,” Chin. Opt. Lett. 13(9), 090603 (2015).
[Crossref]

Liu, C.

Liu, P.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope With double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Lofts, C. M.

C. M. Lofts, P. B. Ruffin, M. D. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng 34(10), 2856–2863 (1995).
[Crossref]

P. B. Ruffin, C. M. Lofts, C. C. Sung, and J. L. Page, “Reduction of nonreciprocity noise in wound fiber optic interferometers,” Opt. Eng 33(8), 2675–2679 (1994).
[Crossref]

Lu, P.

Luo, R.

Mead, D.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Minakuchi, S.

Mitani, S.

Mizutani, T.

Mohr, F.

F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elasto-optic interactions in the sensor fiber,” Proc. SPIE 5502, 410–413 (2004).
[Crossref]

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
[Crossref]

F. Mohr and P. Kiesel, “Thermal sensitivity Of sensing coils for fibre gyroscopes,” Proc. SPIE 0514, 305–308 (1984).
[Crossref]

Morev, I. V.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Napoli, J.

J. Napoli, “20 years of KVH fiber optic gyro technology,” Proc. SPIE 9852, 98520A (2016).

Napolitano, F.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

Obuhovich, D. V.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Ogut, S.

S. Ogut, B. Osunluk, and E. Ozbay, “Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding,” Proc. SPIE 10208, 1020806 (2017).
[Crossref]

Osunluk, B.

S. Ogut, B. Osunluk, and E. Ozbay, “Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding,” Proc. SPIE 10208, 1020806 (2017).
[Crossref]

Ovchinnikov, A. V.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Ozbay, E.

S. Ogut, B. Osunluk, and E. Ozbay, “Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding,” Proc. SPIE 10208, 1020806 (2017).
[Crossref]

Page, J. L.

P. B. Ruffin, C. M. Lofts, C. C. Sung, and J. L. Page, “Reduction of nonreciprocity noise in wound fiber optic interferometers,” Opt. Eng 33(8), 2675–2679 (1994).
[Crossref]

Parker, M. D.

C. M. Lofts, P. B. Ruffin, M. D. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng 34(10), 2856–2863 (1995).
[Crossref]

Paturel, Y.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

Pavlath, G. A.

G. A. Pavlath, “Fiber optic gyros from research to production,” Proc. SPIE 9852, 985205 (2016).
[Crossref]

Peng, C.

Ponomarev, V. G.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Prilutskiy, V. E.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Qiu, T.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Ruffin, P. B.

C. M. Lofts, P. B. Ruffin, M. D. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng 34(10), 2856–2863 (1995).
[Crossref]

P. B. Ruffin, C. M. Lofts, C. C. Sung, and J. L. Page, “Reduction of nonreciprocity noise in wound fiber optic interferometers,” Opt. Eng 33(8), 2675–2679 (1994).
[Crossref]

Sakai, J.

J. Sakai and T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. 18(11), 1899–1909 (1982).
[Crossref]

J. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. 17(11), 1041–1051 (1981).
[Crossref]

Sakai, S.

S. Mitani, T. Mizutani, and S. Sakai, “Current status of fiber optic gyro efforts for space applications in Japan,” Proc. SPIE 9852, 985208 (2016).
[Crossref]

Salit, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanada, T.

Sanders, G. A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

B. Szafraniec and G. A. Sanders, “Theory of polarization evolution in interferometric fiber-optic depolarized gyros,” J. Lightwave Technol. 17(4), 579–590 (1999).
[Crossref]

Sanders, S. J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sasaki, Y.

S. Minakuchi, T. Sanada, N. Takeda, S. Mitani, T. Mizutani, Y. Sasaki, and K. Shinozaki, “Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application,” J. Lightwave Technol. 33(12), 2658–2662 (2015).
[Crossref]

M. Isubokawa and Y. Sasaki, “Limitation of transmission distance and capacity due to polarisation dispersion in a lightwave system,” Electron. Lett. 24(6), 350–352 (1988).
[Crossref]

Schadt, F.

F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elasto-optic interactions in the sensor fiber,” Proc. SPIE 5502, 410–413 (2004).
[Crossref]

Shaw, H. J.

Shinozaki, K.

Shorthill, R. W.

Shupe, D. M.

Smiciklas, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Strandjord, L. K.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sung, C. C.

C. M. Lofts, P. B. Ruffin, M. D. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng 34(10), 2856–2863 (1995).
[Crossref]

P. B. Ruffin, C. M. Lofts, C. C. Sung, and J. L. Page, “Reduction of nonreciprocity noise in wound fiber optic interferometers,” Opt. Eng 33(8), 2675–2679 (1994).
[Crossref]

Szafraniec, B.

Takeda, N.

Tan, Z.

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

Titov, G. V.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Vali, V.

Varnakov, V. K.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Wang, X.

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

Wang, Z.

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

P. Lu, Z. Wang, R. Luo, D. Zhao, C. Peng, and Z. Li, “Polarization nonreciprocity suppression of dual-polarization fiber-optic gyroscope under temperature variation,” Opt. Lett. 40(80), 1826–1829 (2015).
[Crossref] [PubMed]

Z. Wang, Y. Yang, P. Lu, C. Liu, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “Optically compensated polarization reciprocity in interferometric fiber-optic gyroscopes,” Opt. Express 22(5), 4908–4919 (2014).
[Crossref] [PubMed]

Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, C. Peng, and Z. Li, “Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration,” Opt. Lett. 39(8), 2463–2466 (2014).
[Crossref] [PubMed]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photon. J. 6(1), 7100208 (2014).
[Crossref]

Z. Wang, Dual-Polarization Two-Port Fiber-Optic Gyroscope(Springer, 2017).
[Crossref]

Wang, Zinan

Wei, Y.

Wu, J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Xu, Z.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

X. Li, W. Ling, Y. Wei, and Z. Xu, “Three-dimensional model of thermal-induced optical phase shifts in rotation sensing,” Chin. Opt. Lett. 13(9), 090603 (2015).
[Crossref]

Yakimov, E. N.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Yan, Y.

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

Yang, C.

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

Yang, H.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Yang, Y.

Yang, Yi

Zhang, Z.

Z. Wang, Y. Yang, P. Lu, C. Liu, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “Optically compensated polarization reciprocity in interferometric fiber-optic gyroscopes,” Opt. Express 22(5), 4908–4919 (2014).
[Crossref] [PubMed]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photon. J. 6(1), 7100208 (2014).
[Crossref]

Zhao, D.

Zuev, A. I.

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

Appl. Opt. (4)

Chin. Opt. Lett. (1)

Comptes Rendus Physique (1)

H. C. Lefèvre, “The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” Comptes Rendus Physique 15(10), 851–858 (2014).
[Crossref]

Electron. Lett. (1)

M. Isubokawa and Y. Sasaki, “Limitation of transmission distance and capacity due to polarisation dispersion in a lightwave system,” Electron. Lett. 24(6), 350–352 (1988).
[Crossref]

Gyroscopy Navig. (1)

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. 17(11), 1041–1051 (1981).
[Crossref]

J. Sakai and T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. 18(11), 1899–1909 (1982).
[Crossref]

IEEE Photon. J. (1)

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photon. J. 6(1), 7100208 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope With double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Opt. Eng (2)

P. B. Ruffin, C. M. Lofts, C. C. Sung, and J. L. Page, “Reduction of nonreciprocity noise in wound fiber optic interferometers,” Opt. Eng 33(8), 2675–2679 (1994).
[Crossref]

C. M. Lofts, P. B. Ruffin, M. D. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng 34(10), 2856–2863 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (9)

S. Ogut, B. Osunluk, and E. Ozbay, “Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding,” Proc. SPIE 10208, 1020806 (2017).
[Crossref]

F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elasto-optic interactions in the sensor fiber,” Proc. SPIE 5502, 410–413 (2004).
[Crossref]

F. Mohr and P. Kiesel, “Thermal sensitivity Of sensing coils for fibre gyroscopes,” Proc. SPIE 0514, 305–308 (1984).
[Crossref]

N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” Proc. SPIE 0412, 268–271 (1983).
[Crossref]

H. C. Lefèvre, “Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is!” Proc. SPIE 9852, 985203 (2016).
[Crossref]

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

J. Napoli, “20 years of KVH fiber optic gyro technology,” Proc. SPIE 9852, 98520A (2016).

G. A. Pavlath, “Fiber optic gyros from research to production,” Proc. SPIE 9852, 985205 (2016).
[Crossref]

S. Mitani, T. Mizutani, and S. Sakai, “Current status of fiber optic gyro efforts for space applications in Japan,” Proc. SPIE 9852, 985208 (2016).
[Crossref]

Sci. China Inf. Sci. (1)

Z. Tan, C. Yang, Y. Li, Y. Yan, C. He, X. Wang, and Z. Wang, “A low-complexity sensor fusion algorithm based on a fiber-optic gyroscope aided camera pose estimation system,” Sci. China Inf. Sci. 59, 042412 (2016).
[Crossref]

Other (3)

Y. N. Korkishko, V. A. Fedorov, V. E. Prilutskiy, V. G. Ponomarev, I. V. Morev, D. V. Obuhovich, S. M. Kostritskii, A. I. Zuev, V. K. Varnakov, A. V. Belashenko, E. N. Yakimov, G. V. Titov, A. V. Ovchinnikov, I. B. Abdul’minov, and S. V. Latyntsev, “Fiber optic gyro for space applications. Results of R&D and flight tests,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2016), pp. 37–41.

H. C. Lefèvre, The Fiber-Optic Gyroscope, 2nd. ed. (Artech House, 2014).

Z. Wang, Dual-Polarization Two-Port Fiber-Optic Gyroscope(Springer, 2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic of a fiber coil and a cross section of it. (b) The temperature distribution on a cross section of the fiber coil. The temperatures are represented by colors (red, orange, and blue), from high to low; the yellow part shows the the polymer glue between the fibers. (c) The thermal induced stress applied on a single fiber because of thermal expansion under temperature gradient; the dash ellipse presents the deformation of the fiber core schematically.
Fig. 2
Fig. 2 (a) The schematic of dual polarization IFOG setup adopted in this work; (b) The Lyot depolarizer setup in our previous work. setup.(a) is equivalent to setup.(b) but consists of several discrete components. (c) The schematic of fiber twists among segments.
Fig. 3
Fig. 3 Simulation and experiment results for comparison between the SM fiber coil and the PM fiber coil. (a)(b) are temperature data acquired by sensors. (c)(d) are simulation results. (e)(f) are experiment results.
Fig. 4
Fig. 4 The compensated outputs and Allan variance analysis results for comparison between the SM fiber coil and the PM fiber coil. (a)(b) are compensated outputs in experiments. (c)(d) are experiment curves analyzed by Allan variance.

Tables (3)

Tables Icon

Table 1 The derived parameters applied in the wave-propagation model.

Tables Icon

Table 2 Comparison of angle random walk (ARW) and bias instability (BI).

Tables Icon

Table 3 Structural and material parameters applied in the simulation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E = [ E x ( z ) e x + E y ( z ) e y ] e j ω t
d E x d z = j β x E x + κ 12 E y d E y d z = j β y E y + κ 21 E x
E x ( z ) = 1 4 B [ ( B + Δ β ) e j β 1 z + ( B Δ β ) e j β 2 z ] E x in + j κ 12 4 B ( e j β 1 z e j β 2 z ) E y in E y ( z ) = j κ 21 4 B ( e j β 1 z e j β 2 z ) E x in + 1 4 B [ ( B Δ β ) e j β 1 z + ( B + Δ β ) e j β 2 z ] E y in
β x , y = β i ± e cos ( 2 ϕ t z ) F 1 ( ν ) ( i = 1 , 2 )
κ 12 = κ 21 * = ϕ t F 2 j e sin ( 2 ϕ t z ) F 1 ( ν )
Δ e = e ( α T 1 α T 2 ) Δ T E C
M cw = T ( θ n ) n = 1 M K ( κ n ) T ( θ 0 ) = [ C 1 cw C 2 cw C 3 cw C 4 cw ]
M ccw = T ( θ 0 ) n = M 1 K ( κ n * ) T ( θ n ) = [ C 1 ccw C 2 ccw C 3 ccw C 4 ccw ]
T ( θ n ) = [ cos θ n sin θ n sin θ n cos θ n ]
K ( κ n ) = [ κ n x x κ n y x κ n x y κ n y y ]
[ κ n x x κ n y x κ n x y κ n y y ] = 1 4 B [ ( B + Δ β ) e j β 1 z + ( B Δ β ) e j β 2 z j κ 12 ( e j β 1 z e j β 2 z ) j κ 21 ( e j β 1 z e j β 2 z ) ( B Δ β ) e j β 1 z + ( B + Δ β ) e j β 2 z ]
Δ ϕ 1 = arctan [ ( 1 d ) k 1 | C 2 r C 3 r | Γ ( z 23 r ) sin ( ϕ 23 r ) ]
Δ ϕ 2 = arctan [ ( 1 + d ) k 2 | C 2 r C 3 r | Γ ( z 23 r ) sin ( ϕ 23 r ) ]
Δ ϕ comp = arctan [ 2 d k 3 | C 2 r C 3 r | Γ ( z 23 r ) sin ( ϕ 23 r ) ]
B T = B int 2 + B ext 2 2 B int B ext cos 2 θ

Metrics