Abstract

The European XFEL is a free-electron laser (FEL) with a superconducting linear accelerator and three beamlines (SASE1, SASE2, and SASE3) covering the energy range from 250 eV to 24 keV. The SASE3 beamline is dedicated to the soft x-ray range (0.25-3 keV) and is designed to operate in both monochromatic and non-monochromatic mode. A variable line spacing – plane grating (VLS-PG) monochromator is placed along the beam transport system for the monochromatic mode. The VLS parameters of the grating profile are challenging from a manufacturing and measuring perspective, especially at the desired length of 530 mm. A shorter grating of 150 mm has been procured to allow early operation of the facility. We describe the characterization method that was used to assess the VLS parameters of the grating using Fizeau interferometry. The method is intrinsically absolute and limited only by the quality of the test grating and the noise level. Further measurements using a white-light-interferometry profilometer are also reported. We discuss the possibility of extending the method to the future 530 mm long grating.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source

K. Tiedtke, A. A. Sorokin, U. Jastrow, P. Juranić, S. Kreis, N. Gerken, M. Richter, U. Arp, Y. Feng, D. Nordlund, R. Soufli, M. Fernández-Perea, L. Juha, P. Heimann, B. Nagler, H. J. Lee, S. Mack, M. Cammarata, O. Krupin, M. Messerschmidt, M. Holmes, M. Rowen, W. Schlotter, S. Moeller, and J. J. Turner
Opt. Express 22(18) 21214-21226 (2014)

Comparison of mechanically ruled versus holographically varied line-spacing gratings for a soft-x-ray flat-field spectrograph

Takashi Yamazaki, Eric Gullikson, Noboru Miyata, Masato Koike, Yoshihisa Harada, Stanley Mrowka, Ulf Kleineberg, James H. Underwood, Mihiro M. Yanagihara, and Kazuo Sano
Appl. Opt. 38(19) 4001-4003 (1999)

References

  • View by:
  • |
  • |
  • |

  1. M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dobson, S. Düsterer, G. Grübel, W. Graeff, H. Graafsma, J. Hajdu, J. Marangos, J. Pflüger, H. Redlin, D. Riley, I. Robinson, J. Rossbach, A. Schwarz, K. Tiedtke, T. Tschentscher, I. Vartaniants, H. Wabnitz, H. Weise, R. Wichmann, K. Witte, A. Wolf, M. Wulff, and M. Yurkov, eds., “XFEL: The European X-ray Free-Electron Laser – Technical Design Report,” DESY 2006–097 (2006).
  2. H. Sinn, J. Gaudin, L. Samoylova, A. Trapp, and G. Galasso, “Conceptual Design Report: X-Ray Optics and Beam Transport,” XFEL.EU TR-2011–002 (2011).
  3. D. La Civita, N. Gerasimova, H. Sinn, and M. Vannoni, “SASE3: soft X-ray beamline at European XFEL,” Proc. SPIE 9210, 921002 (2014).
    [Crossref]
  4. M. Vannoni and I. Freijo Martín, “Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser,” Rev. Sci. Instrum. 87(5), 051901 (2016).
    [Crossref] [PubMed]
  5. G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6(6), 1077–1084 (1967).
    [Crossref] [PubMed]
  6. B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4), 379–383 (1984).
    [Crossref]
  7. M. Vannoni and G. Molesini, “Iterative algorithm for three flat test,” Opt. Express 15(11), 6809–6816 (2007).
    [Crossref] [PubMed]
  8. M. Vannoni and G. Molesini, “Absolute planarity with three-flat test: an iterative approach with Zernike polynomials,” Opt. Express 16(1), 340–354 (2008).
    [Crossref] [PubMed]
  9. M. Vannoni, “Absolute flatness measurement using oblique incidence setup and an iterative algorithm. A demonstration on synthetic data,” Opt. Express 22(3), 3538–3546 (2014).
    [Crossref] [PubMed]
  10. Y. He, B. Gao, K. Xu, A. Liu, Q. Li, and L. Chai, “Iterative algorithm for absolute planarity calibration in three-flat test,” Opt. Express 22(22), 27669–27674 (2014).
    [Crossref] [PubMed]
  11. D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
    [Crossref]
  12. T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

2016 (1)

M. Vannoni and I. Freijo Martín, “Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser,” Rev. Sci. Instrum. 87(5), 051901 (2016).
[Crossref] [PubMed]

2014 (3)

2013 (1)

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

2010 (1)

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

2008 (1)

2007 (1)

1984 (1)

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4), 379–383 (1984).
[Crossref]

1967 (1)

Artemiev, N.

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

Chai, L.

Diez, S.

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

Freijo Martín, I.

M. Vannoni and I. Freijo Martín, “Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser,” Rev. Sci. Instrum. 87(5), 051901 (2016).
[Crossref] [PubMed]

Fritz, B. S.

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4), 379–383 (1984).
[Crossref]

Gao, B.

Gerasimova, N.

D. La Civita, N. Gerasimova, H. Sinn, and M. Vannoni, “SASE3: soft X-ray beamline at European XFEL,” Proc. SPIE 9210, 921002 (2014).
[Crossref]

Goto, S.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

He, Y.

Hidalgo, S. A.

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

Ishikawa, T.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Kimura, T.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

La Civita, D.

D. La Civita, N. Gerasimova, H. Sinn, and M. Vannoni, “SASE3: soft X-ray beamline at European XFEL,” Proc. SPIE 9210, 921002 (2014).
[Crossref]

Li, Q.

Liu, A.

Lum, P.

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

Masunaga, T.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Matsuyama, S.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Mimura, H.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Molesini, G.

Ohashi, H.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Okada, H.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Padmore, H. A.

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

Schulz, G.

Schwider, J.

Senba, Y.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Sinn, H.

D. La Civita, N. Gerasimova, H. Sinn, and M. Vannoni, “SASE3: soft X-ray beamline at European XFEL,” Proc. SPIE 9210, 921002 (2014).
[Crossref]

Tsumura, N.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Vannoni, M.

M. Vannoni and I. Freijo Martín, “Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser,” Rev. Sci. Instrum. 87(5), 051901 (2016).
[Crossref] [PubMed]

D. La Civita, N. Gerasimova, H. Sinn, and M. Vannoni, “SASE3: soft X-ray beamline at European XFEL,” Proc. SPIE 9210, 921002 (2014).
[Crossref]

M. Vannoni, “Absolute flatness measurement using oblique incidence setup and an iterative algorithm. A demonstration on synthetic data,” Opt. Express 22(3), 3538–3546 (2014).
[Crossref] [PubMed]

M. Vannoni and G. Molesini, “Absolute planarity with three-flat test: an iterative approach with Zernike polynomials,” Opt. Express 16(1), 340–354 (2008).
[Crossref] [PubMed]

M. Vannoni and G. Molesini, “Iterative algorithm for three flat test,” Opt. Express 15(11), 6809–6816 (2007).
[Crossref] [PubMed]

Voronov, D. L.

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

Warwick, T.

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

Xu, K.

Yamakawa, D.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Yamauchi, K.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Yumoto, H.

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Appl. Opt. (1)

Nucl. Instrum. Methods Phys. Res. Sect. A (1)

T. Kimura, H. Ohashi, H. Mimura, D. Yamakawa, H. Yumoto, S. Matsuyama, N. Tsumura, H. Okada, T. Masunaga, Y. Senba, S. Goto, T. Ishikawa, and K. Yamauchi, “A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition,” Nucl. Instrum. Methods Phys. Res. Sect. A 616(2–3), 229–232 (2010).

Opt. Eng. (1)

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4), 379–383 (1984).
[Crossref]

Opt. Express (4)

Proc. SPIE (2)

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. Artemiev, and H. A. Padmore, “Fabrication of x-ray gratings by direct write mask-less lithography,” Proc. SPIE 8848, 88480Q (2013).
[Crossref]

D. La Civita, N. Gerasimova, H. Sinn, and M. Vannoni, “SASE3: soft X-ray beamline at European XFEL,” Proc. SPIE 9210, 921002 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

M. Vannoni and I. Freijo Martín, “Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser,” Rev. Sci. Instrum. 87(5), 051901 (2016).
[Crossref] [PubMed]

Other (2)

M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dobson, S. Düsterer, G. Grübel, W. Graeff, H. Graafsma, J. Hajdu, J. Marangos, J. Pflüger, H. Redlin, D. Riley, I. Robinson, J. Rossbach, A. Schwarz, K. Tiedtke, T. Tschentscher, I. Vartaniants, H. Wabnitz, H. Weise, R. Wichmann, K. Witte, A. Wolf, M. Wulff, and M. Yurkov, eds., “XFEL: The European X-ray Free-Electron Laser – Technical Design Report,” DESY 2006–097 (2006).

H. Sinn, J. Gaudin, L. Samoylova, A. Trapp, and G. Galasso, “Conceptual Design Report: X-Ray Optics and Beam Transport,” XFEL.EU TR-2011–002 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Measurement setup for the grating substrate characterization in normal incidence (a) and for the VLS parameter measurement using the Littrow setup (b)
Fig. 2
Fig. 2 Measurement of the grating surface, with 2D map (a) and central profile (b)
Fig. 3
Fig. 3 Measurement of the diffracted wavefront from order 1, in the Littrow setup: 2D map (a) and central profile with the best third-order polynomial fit (b). The best fitting parabolic term is removed to show the small effect coming by the non-zero b2 parameter.
Fig. 4
Fig. 4 Measurement of the diffracted wavefront from order 1, corresponding to internal (a) and external (b) order. Central profiles are including the parabolic term (1a and 1b) or not (2a and 2b).
Fig. 5
Fig. 5 Example of a WLI measurement: 2D map (a), central profile (b), statistical analysis to retrieve profile depth (c), and duty cycle (d).

Tables (4)

Tables Icon

Table 1 VLS grating specifications

Tables Icon

Table 2 Large-aperture Fizeau interferometer specifications

Tables Icon

Table 3 Bruker Wyko NT9100 profilometer specifications

Tables Icon

Table 4 Measured parameters on the grating

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϑ L = sin 1 ( mλ b 0 2 ).
Δϑ(x) sin 1 (mλb).

Metrics