Abstract

Searching for innovative approaches to detect single photons remains at the center of science and technology for decades. This paper proposes a zero transit-time, non-avalanche quantum capacitive photodetector to register single photons. In this detector, the absorption of a single photon changes the wave function of a single electron trapped in a quantum dot (QD), leading to a charge density redistribution nearby. This redistribution translates into a voltage signal through capacitive coupling between the QD and the measurement probe. Using InAs QD/AlAs barrier as a model system, the simulation shows that the output signal reaches ~4 mV per absorbed photon, promising for high-sensitivity, ps single-photon detection.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

1 December 2017: Typographical corrections were made to the figure captions of Figs. 5 and 6, paragraph 1 of Section 3.3, and Ref. 11.


OSA Recommended Articles
Quantum-dot-based single-photon avalanche detector for mid-infrared applications

Mahdi Zavvari
J. Opt. Soc. Am. B 32(5) 737-742 (2015)

Quantum dot infrared photodetector with gated-mode design for mid-IR single photon detection

Mahdi Zavvari and Vahid Ahmadi
Appl. Opt. 52(32) 7675-7681 (2013)

Quantum witness of high-speed low-noise single-photon detection

Lin Zhao, Kun Huang, Yan Liang, Jie Chen, Xueshun Shi, E Wu, and Heping Zeng
Opt. Express 23(25) 31857-31863 (2015)

References

  • View by:
  • |
  • |
  • |

  1. U. Hilleringmann and K. Goser, “Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip,” IEEE Trans. Electron Dev. 42, 841–846 (1995).
  2. H. Izuo, “Optoelectronic Devices and Material Technologies for Photo-Electronic Integrated Systems,” Jpn. J. Appl. Phys. 32, 266 (1993).
  3. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [PubMed]
  4. S. R. Forrest, “Optoelectronic integrated circuits‎,” Proc. IEEE 75, 1488–1497 (1987).
  5. B. E. Jones, “Optical fibre sensors and systems for industry,” J. Phys. Educ. 18(9), 770 (1985).
  6. L. Becker, “Influence of IR sensor technology on the military and civil defense,” Proc. SPIE 6127, 61270S (2006).
  7. T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).
  8. E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Dev. 44, 1689–1698 (1997).
  9. E. R. Fossum and D. B. Hondongwa, “A Review of the Pinned Photodiode for CCD and CMOS Image Sensors,” IEEE J. Electron. Dev. Soc. 2, 33–43 (2014).
  10. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
  11. Y. Zhang, Y. Yuan, and J. Huang, “Detecting 100 fW cm(-2) Light with Trapped Electron Gated Organic Phototransistors,” Adv. Mater. 29(5), 1603969 (2017).
    [PubMed]
  12. U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).
  13. H. Photonics, Photomultipler tubes, basics and applications (Hamamatsu, 2006).
  14. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
    [PubMed]
  15. M. Teich, K. Matsuo, and B. Saleh, “Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes‎,” IEEE J. Quantum Electron. 22, 1184–1193 (1986).
  16. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [PubMed]
  17. J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
    [PubMed]
  18. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
  19. J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).
  20. W. Du, H. Inokawa, H. Satoh, and A. Ono, “SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting,” Opt. Lett. 36(15), 2800–2802 (2011).
    [PubMed]
  21. E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).
  22. J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3 e-rms read noise and photon counting capability,” IEEE Electron Device Lett. 36(9), 926–928 (2015).
  23. E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors (Basel) 16(8), 1260 (2016).
    [PubMed]
  24. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Ed (Willey-Interscience, 2006).
  25. J. E. Bowers and Y. G. Wey, “High Speed Photodetectors”, in Handbook of Optics, Vol. I, 2nd Ed, M. Bass, ed. (McGraw-Hill New York, 1995), Chap. 17.
  26. DARPA solicitation DARPA-BAA-16-25, “Fundamental Limits of Photon Detection,” https://www.fbo.gov/index?s=opportunity&mode=form&id=6d13cf57d50d88aeff23e77a0ca3d4ba&tab=core&_cview=0 .
  27. S. Funk, G. Acuna, M. Handloser, and R. Kersting, “Probing the momentum relaxation time of charge carriers in ultrathin layers with terahertz radiation,” Opt. Express 17(20), 17450–17456 (2009).
    [PubMed]
  28. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
    [PubMed]
  29. K. K. Likharev, “Single-electron devices and their applications,” Proc. IEEE 87(4), 606–632 (1999).
  30. Z. M. Wang, K. Holmes, J. L. Shultz, and G. J. Salamo, “Self-assembly of GaAs holed nanostructures by droplet epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 202, R85–R87 (2005).
  31. H. Grabert and M. H. Devoret, Single charge tunneling: Coulomb blockade phenomena in nanostructures, (Plenum Press, 1992).
  32. M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).
  33. J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, “Enhancing the optical cross section of quantum antenna,” Phys. Rev. A 95(1), 013814 (2017).
  34. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (Word Scientific Publishing, 1996).
  35. R. V. N. Melnik and M. Willatzen, “Bandstructures of conical quantum dots with wetting layers,” Nanotechnology 15, 1 (2004).
  36. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
  37. Z. Z. Lwin, K. L. Pey, N. Raghavan, Y. Chen, and S. Mahapatra, “New Leakage Mechanism and Dielectric Breakdown Layer Detection in Metal-Nanocrystal-Embedded Dual-Layer Memory Gate Stack,” IEEE Electron Device Lett. 32, 800–802 (2011).
  38. J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. J. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Appl. Phys. Lett. 89, 202101 (2006).
  39. Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
    [PubMed]
  40. ITRS. Reports, “2015 ITRS 2.0,” http://www.itrs2.net/itrs-reports.html .
  41. K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).
  42. V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, “InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry,” J. Am. Chem. Soc. 138(41), 13485–13488 (2016).
    [PubMed]
  43. V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
    [PubMed]
  44. E. J. Gansen, M. A. Rowe, D. Rosenberg, M. Greene, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Single-photon detection using a semiconductor quantum dot, optically gated, field-effect transistor,” in Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference (IEEE. 2006), pp. 1–2.
  45. J. Kim and J. F. Buckwalter, “Staggered gain for 100+ GHz broadband amplifiers,” IEEE J. Solid-State Circuits 46(5), 1123–1136 (2011).
  46. S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).
  47. B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
    [PubMed]
  48. C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).
  49. Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

2017 (4)

Y. Zhang, Y. Yuan, and J. Huang, “Detecting 100 fW cm(-2) Light with Trapped Electron Gated Organic Phototransistors,” Adv. Mater. 29(5), 1603969 (2017).
[PubMed]

J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, “Enhancing the optical cross section of quantum antenna,” Phys. Rev. A 95(1), 013814 (2017).

S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

2016 (5)

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
[PubMed]

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).

V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, “InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry,” J. Am. Chem. Soc. 138(41), 13485–13488 (2016).
[PubMed]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors (Basel) 16(8), 1260 (2016).
[PubMed]

2015 (1)

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3 e-rms read noise and photon counting capability,” IEEE Electron Device Lett. 36(9), 926–928 (2015).

2014 (2)

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[PubMed]

E. R. Fossum and D. B. Hondongwa, “A Review of the Pinned Photodiode for CCD and CMOS Image Sensors,” IEEE J. Electron. Dev. Soc. 2, 33–43 (2014).

2013 (2)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

2011 (4)

J. Kim and J. F. Buckwalter, “Staggered gain for 100+ GHz broadband amplifiers,” IEEE J. Solid-State Circuits 46(5), 1123–1136 (2011).

Z. Z. Lwin, K. L. Pey, N. Raghavan, Y. Chen, and S. Mahapatra, “New Leakage Mechanism and Dielectric Breakdown Layer Detection in Metal-Nanocrystal-Embedded Dual-Layer Memory Gate Stack,” IEEE Electron Device Lett. 32, 800–802 (2011).

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[PubMed]

W. Du, H. Inokawa, H. Satoh, and A. Ono, “SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting,” Opt. Lett. 36(15), 2800–2802 (2011).
[PubMed]

2010 (2)

T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

2009 (2)

2008 (1)

U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).

2007 (1)

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

2006 (2)

J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. J. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Appl. Phys. Lett. 89, 202101 (2006).

L. Becker, “Influence of IR sensor technology on the military and civil defense,” Proc. SPIE 6127, 61270S (2006).

2005 (2)

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Z. M. Wang, K. Holmes, J. L. Shultz, and G. J. Salamo, “Self-assembly of GaAs holed nanostructures by droplet epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 202, R85–R87 (2005).

2004 (1)

R. V. N. Melnik and M. Willatzen, “Bandstructures of conical quantum dots with wetting layers,” Nanotechnology 15, 1 (2004).

2001 (3)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

1999 (1)

K. K. Likharev, “Single-electron devices and their applications,” Proc. IEEE 87(4), 606–632 (1999).

1997 (2)

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Dev. 44, 1689–1698 (1997).

1996 (1)

1995 (1)

U. Hilleringmann and K. Goser, “Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip,” IEEE Trans. Electron Dev. 42, 841–846 (1995).

1993 (1)

H. Izuo, “Optoelectronic Devices and Material Technologies for Photo-Electronic Integrated Systems,” Jpn. J. Appl. Phys. 32, 266 (1993).

1987 (1)

S. R. Forrest, “Optoelectronic integrated circuits‎,” Proc. IEEE 75, 1488–1497 (1987).

1986 (1)

M. Teich, K. Matsuo, and B. Saleh, “Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes‎,” IEEE J. Quantum Electron. 22, 1184–1193 (1986).

1985 (1)

B. E. Jones, “Optical fibre sensors and systems for industry,” J. Phys. Educ. 18(9), 770 (1985).

Abdulrazzaq, B. I.

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Acuna, G.

Akgun, U.

U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).

Andrew, J. S.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Anzagira, L.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors (Basel) 16(8), 1260 (2016).
[PubMed]

Arrieta, J. P.

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Atkinson, P.

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Avouris, P.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[PubMed]

Ayan, A. S.

U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).

Aydin, G.

U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Banal, R. G.

T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).

Bateman, J.

S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).

Bawendi, M. G.

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Becker, L.

L. Becker, “Influence of IR sensor technology on the military and civil defense,” Proc. SPIE 6127, 61270S (2006).

Bellei, F.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

Berggren, K. K.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

Blakesley, J. C.

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

Bowers, J. E.

Buckwalter, J. F.

J. Kim and J. F. Buckwalter, “Staggered gain for 100+ GHz broadband amplifiers,” IEEE J. Solid-State Circuits 46(5), 1123–1136 (2011).

Calandri, N.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

Carl, E. N.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Chen, X.

J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, “Enhancing the optical cross section of quantum antenna,” Phys. Rev. A 95(1), 013814 (2017).

Chen, Y.

Z. Z. Lwin, K. L. Pey, N. Raghavan, Y. Chen, and S. Mahapatra, “New Leakage Mechanism and Dielectric Breakdown Layer Detection in Metal-Nanocrystal-Embedded Dual-Layer Memory Gate Stack,” IEEE Electron Device Lett. 32, 800–802 (2011).

Cova, S.

Dane, A. E.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

David, A. R.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

De Nolf, K.

V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, “InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry,” J. Am. Chem. Soc. 138(41), 13485–13488 (2016).
[PubMed]

Du, W.

Dupont, D.

V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, “InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry,” J. Am. Chem. Soc. 138(41), 13485–13488 (2016).
[PubMed]

Duru, F.

U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).

Duvall, J.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[PubMed]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[PubMed]

Farooq, H.

S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).

Farrer, I.

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[PubMed]

Fields, C. H.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Forrest, S. R.

S. R. Forrest, “Optoelectronic integrated circuits‎,” Proc. IEEE 75, 1488–1497 (1987).

Fossum, E. R.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors (Basel) 16(8), 1260 (2016).
[PubMed]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3 e-rms read noise and photon counting capability,” IEEE Electron Device Lett. 36(9), 926–928 (2015).

E. R. Fossum and D. B. Hondongwa, “A Review of the Pinned Photodiode for CCD and CMOS Image Sensors,” IEEE J. Electron. Dev. Soc. 2, 33–43 (2014).

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Dev. 44, 1689–1698 (1997).

Funato, M.

T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).

Funk, S.

Gansen, E. J.

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Ghioni, M.

Goh, K. H.

K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).

Gong, X.

K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).

Goser, K.

U. Hilleringmann and K. Goser, “Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip,” IEEE Trans. Electron Dev. 42, 841–846 (1995).

Gossard, A. C.

Greene, M. B.

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Grigel, V.

V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, “InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry,” J. Am. Chem. Soc. 138(41), 13485–13488 (2016).
[PubMed]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Halin, I. A.

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Han, H. S.

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Handloser, M.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Harvey, T. E.

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Hens, Z.

V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, “InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry,” J. Am. Chem. Soc. 138(41), 13485–13488 (2016).
[PubMed]

Hilleringmann, U.

U. Hilleringmann and K. Goser, “Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip,” IEEE Trans. Electron Dev. 42, 841–846 (1995).

Hoffman, J.

S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).

Holmes, K.

Z. M. Wang, K. Holmes, J. L. Shultz, and G. J. Salamo, “Self-assembly of GaAs holed nanostructures by droplet epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 202, R85–R87 (2005).

Hondongwa, D. B.

E. R. Fossum and D. B. Hondongwa, “A Review of the Pinned Photodiode for CCD and CMOS Image Sensors,” IEEE J. Electron. Dev. Soc. 2, 33–43 (2014).

Hu, E. L.

Huang, J.

Y. Zhang, Y. Yuan, and J. Huang, “Detecting 100 fW cm(-2) Light with Trapped Electron Gated Organic Phototransistors,” Adv. Mater. 29(5), 1603969 (2017).
[PubMed]

Hussain, T.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Ian, F.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Ibrahim, O. J.

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Inokawa, H.

Izuo, H.

H. Izuo, “Optoelectronic Devices and Material Technologies for Photo-Electronic Integrated Systems,” Jpn. J. Appl. Phys. 32, 266 (1993).

Jones, B. E.

B. E. Jones, “Optical fibre sensors and systems for industry,” J. Phys. Educ. 18(9), 770 (1985).

Kardynal, B. E.

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Kataoka, K.

T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).

Kawahito, S.

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Kawakami, Y.

T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).

Kersting, R.

Kim, J.

J. Kim and J. F. Buckwalter, “Staggered gain for 100+ GHz broadband amplifiers,” IEEE J. Solid-State Circuits 46(5), 1123–1136 (2011).

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[PubMed]

Lacaita, A.

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

Lau, K. M.

Lee, J. H.

J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. J. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Appl. Phys. Lett. 89, 202101 (2006).

Lee, L.

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Li, Q.

Liang, G.

K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).

Likharev, K. K.

K. K. Likharev, “Single-electron devices and their applications,” Proc. IEEE 87(4), 606–632 (1999).

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Liu, A. Y.

Liu, J.

J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, “Enhancing the optical cross section of quantum antenna,” Phys. Rev. A 95(1), 013814 (2017).

Low, K. L.

K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).

Lwin, Z. Z.

Z. Z. Lwin, K. L. Pey, N. Raghavan, Y. Chen, and S. Mahapatra, “New Leakage Mechanism and Dielectric Breakdown Layer Detection in Metal-Nanocrystal-Embedded Dual-Layer Memory Gate Stack,” IEEE Electron Device Lett. 32, 800–802 (2011).

Ma, J.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors (Basel) 16(8), 1260 (2016).
[PubMed]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3 e-rms read noise and photon counting capability,” IEEE Electron Device Lett. 36(9), 926–928 (2015).

Mahapatra, S.

Z. Z. Lwin, K. L. Pey, N. Raghavan, Y. Chen, and S. Mahapatra, “New Leakage Mechanism and Dielectric Breakdown Layer Detection in Metal-Nanocrystal-Embedded Dual-Layer Memory Gate Stack,” IEEE Electron Device Lett. 32, 800–802 (2011).

Manfrinato, V. R.

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Mark, L. L.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Martin, P. O. S.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Masoodian, S.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors (Basel) 16(8), 1260 (2016).
[PubMed]

Matsuo, K.

M. Teich, K. Matsuo, and B. Saleh, “Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes‎,” IEEE J. Quantum Electron. 22, 1184–1193 (1986).

Mazur, Y. I.

J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. J. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Appl. Phys. Lett. 89, 202101 (2006).

McCaughan, A. N.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

McGuire, C.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Melnik, R. V. N.

R. V. N. Melnik and M. Willatzen, “Bandstructures of conical quantum dots with wetting layers,” Nanotechnology 15, 1 (2004).

Mentzel, T. S.

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).

Michael, P.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[PubMed]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Montes, M.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[PubMed]

Mukai, K.

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).

Nalin, K. P.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Neil, J. C.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Olson, J.

U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).

Onel, Y.

U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).

Ono, A.

Oto, T.

T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

Pey, K. L.

Z. Z. Lwin, K. L. Pey, N. Raghavan, Y. Chen, and S. Mahapatra, “New Leakage Mechanism and Dielectric Breakdown Layer Detection in Metal-Nanocrystal-Embedded Dual-Layer Memory Gate Stack,” IEEE Electron Device Lett. 32, 800–802 (2011).

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[PubMed]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[PubMed]

Raghavan, N.

Z. Z. Lwin, K. L. Pey, N. Raghavan, Y. Chen, and S. Mahapatra, “New Leakage Mechanism and Dielectric Breakdown Layer Detection in Metal-Nanocrystal-Embedded Dual-Layer Memory Gate Stack,” IEEE Electron Device Lett. 32, 800–802 (2011).

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).

Richard, A. H.

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Ritchie, D. A.

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Rosenberg, D.

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Rowe, M. A.

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Salamo, G. J.

J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. J. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Appl. Phys. Lett. 89, 202101 (2006).

Z. M. Wang, K. Holmes, J. L. Shultz, and G. J. Salamo, “Self-assembly of GaAs holed nanostructures by droplet epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 202, R85–R87 (2005).

Saleh, B.

M. Teich, K. Matsuo, and B. Saleh, “Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes‎,” IEEE J. Quantum Electron. 22, 1184–1193 (1986).

Samori, C.

Santavicca, D. F.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

Satoh, H.

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

See, P.

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

Shafie, S.

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Shields, A. J.

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Shoji, H.

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).

Shopov, S.

S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).

Shultz, J. L.

Z. M. Wang, K. Holmes, J. L. Shultz, and G. J. Salamo, “Self-assembly of GaAs holed nanostructures by droplet epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 202, R85–R87 (2005).

Sidek, R. M.

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Strasfeld, D. B.

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Strom, N. W.

J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. J. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Appl. Phys. Lett. 89, 202101 (2006).

Su, M. Y.

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Sugawara, M.

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).

Teich, M.

M. Teich, K. Matsuo, and B. Saleh, “Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes‎,” IEEE J. Quantum Electron. 22, 1184–1193 (1986).

Tessier, M. D.

V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, “InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry,” J. Am. Chem. Soc. 138(41), 13485–13488 (2016).
[PubMed]

Thomas, S.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Tsen, T.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Valles, I.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Vasilakopoulos, K.

S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

Vitiello, M. S.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[PubMed]

Voinigescu, S. P.

S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).

Wan, Y.

Wang, H.-Z.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

Wang, Z. M.

J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. J. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Appl. Phys. Lett. 89, 202101 (2006).

Z. M. Wang, K. Holmes, J. L. Shultz, and G. J. Salamo, “Self-assembly of GaAs holed nanostructures by droplet epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 202, R85–R87 (2005).

Wanger, D. D.

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Willatzen, M.

R. V. N. Melnik and M. Willatzen, “Bandstructures of conical quantum dots with wetting layers,” Nanotechnology 15, 1 (2004).

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

Yadav, S.

K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).

Yeo, Y. C.

K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).

Ying, L.

J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, “Enhancing the optical cross section of quantum antenna,” Phys. Rev. A 95(1), 013814 (2017).

Yoon, Y.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Yu, Z.

J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, “Enhancing the optical cross section of quantum antenna,” Phys. Rev. A 95(1), 013814 (2017).

Yuan, Y.

Y. Zhang, Y. Yuan, and J. Huang, “Detecting 100 fW cm(-2) Light with Trapped Electron Gated Organic Phototransistors,” Adv. Mater. 29(5), 1603969 (2017).
[PubMed]

Yunus, N. A. M.

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Zappa, F.

Zehnder, D.

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

Zhang, Y.

Y. Zhang, Y. Yuan, and J. Huang, “Detecting 100 fW cm(-2) Light with Trapped Electron Gated Organic Phototransistors,” Adv. Mater. 29(5), 1603969 (2017).
[PubMed]

Zhao, Q.-Y.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

Zhou, M.

J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, “Enhancing the optical cross section of quantum antenna,” Phys. Rev. A 95(1), 013814 (2017).

Zhu, D.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

Zizza, R.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors (Basel) 16(8), 1260 (2016).
[PubMed]

Adv. Mater. (1)

Y. Zhang, Y. Yuan, and J. Huang, “Detecting 100 fW cm(-2) Light with Trapped Electron Gated Organic Phototransistors,” Adv. Mater. 29(5), 1603969 (2017).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).

J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. J. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Appl. Phys. Lett. 89, 202101 (2006).

IEEE Electron Device Lett. (2)

Z. Z. Lwin, K. L. Pey, N. Raghavan, Y. Chen, and S. Mahapatra, “New Leakage Mechanism and Dielectric Breakdown Layer Detection in Metal-Nanocrystal-Embedded Dual-Layer Memory Gate Stack,” IEEE Electron Device Lett. 32, 800–802 (2011).

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3 e-rms read noise and photon counting capability,” IEEE Electron Device Lett. 36(9), 926–928 (2015).

IEEE J. Electron. Dev. Soc. (1)

E. R. Fossum and D. B. Hondongwa, “A Review of the Pinned Photodiode for CCD and CMOS Image Sensors,” IEEE J. Electron. Dev. Soc. 2, 33–43 (2014).

IEEE J. Quantum Electron. (1)

M. Teich, K. Matsuo, and B. Saleh, “Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes‎,” IEEE J. Quantum Electron. 22, 1184–1193 (1986).

IEEE J. Solid-State Circuits (1)

J. Kim and J. F. Buckwalter, “Staggered gain for 100+ GHz broadband amplifiers,” IEEE J. Solid-State Circuits 46(5), 1123–1136 (2011).

IEEE Microw. Wirel. Compon. Lett. (1)

C. H. Fields, T. Tsen, C. McGuire, Y. Yoon, D. Zehnder, S. Thomas, M. Montes, I. Valles, J. Duvall, and T. Hussain, “110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet,” IEEE Microw. Wirel. Compon. Lett. 20(8), 465–467 (2010).

IEEE Trans. Electron Dev. (3)

K. H. Goh, S. Yadav, K. L. Low, G. Liang, X. Gong, and Y. C. Yeo, “Gate-All-Around In0.53Ga0.47As Junctionless Nanowire FET With Tapered Source/Drain Structure,” IEEE Trans. Electron Dev. 63(3), 1027–1033 (2016).

U. Hilleringmann and K. Goser, “Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip,” IEEE Trans. Electron Dev. 42, 841–846 (1995).

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Dev. 44, 1689–1698 (1997).

J. Am. Chem. Soc. (1)

V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, “InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry,” J. Am. Chem. Soc. 138(41), 13485–13488 (2016).
[PubMed]

J. Appl. Phys. (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).

J. Instrum. (1)

U. Akgun, A. S. Ayan, G. Aydin, F. Duru, J. Olson, and Y. Onel, “Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes,” J. Instrum. 3, T01001 (2008).

J. Phys. Educ. (1)

B. E. Jones, “Optical fibre sensors and systems for industry,” J. Phys. Educ. 18(9), 770 (1985).

Jpn. J. Appl. Phys. (2)

H. Izuo, “Optoelectronic Devices and Material Technologies for Photo-Electronic Integrated Systems,” Jpn. J. Appl. Phys. 32, 266 (1993).

J. S. Andrew, P. O. S. Martin, F. Ian, A. R. David, L. L. Mark, K. P. Nalin, A. H. Richard, E. N. Carl, J. C. Neil, and P. Michael, “Single Photon Detection with a Quantum Dot Transistor‎,” Jpn. J. Appl. Phys. 40, 2058 (2001).

Nanotechnology (2)

R. V. N. Melnik and M. Willatzen, “Bandstructures of conical quantum dots with wetting layers,” Nanotechnology 15, 1 (2004).

V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15 nm clusters,” Nanotechnology 24(12), 125302 (2013).
[PubMed]

Nat. Nanotechnol. (1)

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[PubMed]

Nat. Photonics (5)

T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).

E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor,” Nat. Photonics 1, 585–588 (2007).

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11, 247–251 (2017).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, “Enhancing the optical cross section of quantum antenna,” Phys. Rev. A 95(1), 013814 (2017).

Phys. Rev. Lett. (2)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[PubMed]

J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson, I. Farrer, and D. A. Ritchie, “Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes,” Phys. Rev. Lett. 94(6), 067401 (2005).
[PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

Z. M. Wang, K. Holmes, J. L. Shultz, and G. J. Salamo, “Self-assembly of GaAs holed nanostructures by droplet epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 202, R85–R87 (2005).

Proc. IEEE (3)

K. K. Likharev, “Single-electron devices and their applications,” Proc. IEEE 87(4), 606–632 (1999).

S. R. Forrest, “Optoelectronic integrated circuits‎,” Proc. IEEE 75, 1488–1497 (1987).

S. P. Voinigescu, S. Shopov, J. Bateman, H. Farooq, J. Hoffman, and K. Vasilakopoulos, “Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon,” Proc. IEEE 105(6), 1087–1104 (2017).

Proc. SPIE (1)

L. Becker, “Influence of IR sensor technology on the military and civil defense,” Proc. SPIE 6127, 61270S (2006).

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[PubMed]

Sensors (Basel) (2)

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors (Basel) 16(8), 1260 (2016).
[PubMed]

B. I. Abdulrazzaq, O. J. Ibrahim, S. Kawahito, R. M. Sidek, S. Shafie, N. A. M. Yunus, L. Lee, and I. A. Halin, “Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications,” Sensors (Basel) 16(10), 1593 (2016).
[PubMed]

Other (8)

ITRS. Reports, “2015 ITRS 2.0,” http://www.itrs2.net/itrs-reports.html .

E. J. Gansen, M. A. Rowe, D. Rosenberg, M. Greene, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, “Single-photon detection using a semiconductor quantum dot, optically gated, field-effect transistor,” in Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference (IEEE. 2006), pp. 1–2.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Ed (Willey-Interscience, 2006).

J. E. Bowers and Y. G. Wey, “High Speed Photodetectors”, in Handbook of Optics, Vol. I, 2nd Ed, M. Bass, ed. (McGraw-Hill New York, 1995), Chap. 17.

DARPA solicitation DARPA-BAA-16-25, “Fundamental Limits of Photon Detection,” https://www.fbo.gov/index?s=opportunity&mode=form&id=6d13cf57d50d88aeff23e77a0ca3d4ba&tab=core&_cview=0 .

H. Grabert and M. H. Devoret, Single charge tunneling: Coulomb blockade phenomena in nanostructures, (Plenum Press, 1992).

M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (Word Scientific Publishing, 1996).

H. Photonics, Photomultipler tubes, basics and applications (Hamamatsu, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Variation of the electron distribution probability around a QD (in red) upon single-photon absorption. GS and ES denote the electron ground and first excited states, respectively. |Ψ|2 is the electron distribution probability, and its profile is sketched in blue.
Fig. 2
Fig. 2 Schematic diagram of the model system used for simulation: 3-dimensional (a) and cross-sectional (b) views.
Fig. 3
Fig. 3 Energy band diagram of the InAs/AlAs model system in equilibrium along an axis parallel (a) or perpendicular (b) to the substrate. The black dot represents a single electron sitting in the ground state. Χ denotes the Χ point of the conduction band of AlAs from which the electron affinity is measured [31]. (c) and (d) are top views of normalized GS and ES (real part) wave functions of a single electron trapped in the QD, respectively. (e) and (f) are color-coded mapping of normalized charge distribution on the x-z plane across the center of the QD for the GS and ES, respectively. r1 (r2) is the effective distance between the top probe and the GS (ES) charge distribution, as described in the main text.
Fig. 4
Fig. 4 Potential distribution in space induced by a single electron in the ground state (a) and in the excited state (b). (c) displays the potential difference (∆V = Ves - Vgs) in space. The contour lines in (a)-(c) are labeled with potential values. (d) Potential difference (output signal) at top (green) and side (blue) probe locations as marked in the inset while changing the distance d between the probes and the InAs QD.
Fig. 5
Fig. 5 Output signal detected at top (green) and side (blue) probe locations while changing the radius of the QD. Red circles indicate the maximum outputs. All QDs have a bottom radius of 10 nm and a height of 5 nm.
Fig. 6
Fig. 6 Effect of QD shape on the detector output signal at top and side probe locations. All QDs have a bottom radius of 10 nm and a height of 5 nm. The profiles of the QDs are sketched above the corresponding histograms.
Fig. 7
Fig. 7 A possible readout scheme for QCP. SEL stands for an optional FET that can be used to enable/disable the measurement.The eqation provides the relationship between the FET channel current change and the TIA output voltage. δQ is an equivalent charge change on the QD, C is the coupling capacitance between the QD and the gate, ∆Q is the charge flowing in the FET channel in a measurement time window of τ. R is a feedback resistor.

Tables (2)

Tables Icon

Table 1 Geometric parameters used in simulation

Tables Icon

Table 2 Material parameters used in simulation [31]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = e 4 π ε 0 ε r r

Metrics