Abstract

Software-defined optical networking (SDON) will become the next generation optical network architecture. However, the optical layer and control layer of SDON are vulnerable to cyberattacks. While, data encryption is an effective method to minimize the negative effects of cyberattacks, secure key interchange is its major challenge which can be addressed by the quantum key distribution (QKD) technique. Hence, in this paper we discuss the integration of QKD with WDM optical networks to secure the SDON architecture by introducing a novel key on demand (KoD) scheme which is enabled by a novel routing, wavelength and key assignment (RWKA) algorithm. The QKD over SDON with KoD model follows two steps to provide security: i) quantum key pools (QKPs) construction for securing the control channels (CChs) and data channels (DChs); ii) the KoD scheme uses RWKA algorithm to allocate and update secret keys for different security requirements. To test our model, we define a security probability index which measures the security gain in CChs and DChs. Simulation results indicate that the security performance of CChs and DChs can be enhanced by provisioning sufficient secret keys in QKPs and performing key-updating considering potential cyberattacks. Also, KoD is beneficial to achieve a positive balance between security requirements and key resource usage.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-tenant provisioning over software defined networking enabled metropolitan area quantum key distribution networks

Yuan Cao, Yongli Zhao, Xiaosong Yu, and Jie Zhang
J. Opt. Soc. Am. B 36(3) B31-B40 (2019)

Multi-tenant secret-key assignment over quantum key distribution networks

Yuan Cao, Yongli Zhao, Rui Lin, Xiaosong Yu, Jie Zhang, and Jiajia Chen
Opt. Express 27(3) 2544-2561 (2019)

Protection Schemes for Key Service in Optical Networks Secured by Quantum Key Distribution (QKD)

Hua Wang, Yongli Zhao, Xiaosong Yu, Zhangchao Ma, Jianquan Wang, Avishek Nag, Longteng Yi, and Jie Zhang
J. Opt. Commun. Netw. 11(3) 67-78 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “Scaling optical fiber networks: challenges and solutions,” Opt. Photonics News 26(3), 28–35 (2015).
  2. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
  3. N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).
  4. Y. Zhao, R. He, H. Chen, J. Zhang, Y. Ji, H. Zheng, Y. Lin, and X. Wang, “Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks,” Opt. Express 22(8), 9538–9547 (2014).
    [PubMed]
  5. D. B. Rawat and S. R. Reddy, “Software defined networking architecture, security and energy efficiency: a survey,” IEEE Commun. Surveys Tuts. 19(1), 325–346 (2017).
  6. S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A survey,” in Proceedings of IEEE SDN Future Netw. Services, Trento, Italy, 1–7 (2013).
  7. N. Wolchover, “A tricky path to quantum-safe encryption,” Quanta Magazine, Sept. 2015.
  8. Quantum-Safe Security Working Group, “What is quantum key distribution?” Cloud Security Alliance, Dec. 2015.
  9. W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1591–1601 (2009).
  10. H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
  11. H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
    [PubMed]
  12. R. J. Runser, T. E. Chapuran, P. Toliver, M. S. Goodman, J. Jackel, N. Nweke, S. R. McNown, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Demonstration of 1.3 μm quantum key distribution (QKD) compatibility with 1.5 μm metropolitan wavelength division multiplexed (WDM) systems,” in Proceedings of OFC/NFOEC2005, Anaheim, CA, USA, Mar. 2005, paper OWI2.
  13. T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” J. Lightwave Technol. 32(13), 2332–2339 (2014).
  14. L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).
  15. B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12(10), 103042 (2010).
  16. A. Aguado, E. Hugues-Salas, P. A. Haigh, J. Marhuenda, A. B. Price, P. Sibson, J. E. Kennard, C. Erven, J. G. Rarity, M. G. Thompson, A. Lord, R. Nejabati, and D. Simeonidou, “Secure NFV orchestration over an SDN-controlled optical network with time-shared quantum key distribution resources,” J. Lightwave Technol. 35(8), 1357–1362 (2017).
  17. A. V. Gleim, V. I. Egorov, Y. V. Nazarov, S. V. Smirnov, V. V. Chistyakov, O. I. Bannik, A. A. Anisimov, S. M. Kynev, A. E. Ivanova, R. J. Collins, S. A. Kozlov, and G. S. Buller, “Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference,” Opt. Express 24(3), 2619–2633 (2016).
    [PubMed]
  18. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010).
  19. K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
  20. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984, 175–179.
  21. M. Delgado, “Soft processing techniques for quantum key distribution applications,” PhD thesis, Politecnico di Torino, 2012.
  22. R. V. Meter and J. Touch, “Designing quantum repeater networks,” IEEE Commun. Mag. 51(8), 64–71 (2013).
  23. S. Bahrani, M. Razavi, and J. A. Salehi, “Optimal wavelength allocation in hybrid quantum-classical networks,” in Proceedings of EUSIPCO2016, Budapest, Hungary, Aug. 2016.
  24. H. Kawahara, A. Medhipour, and K. Inoue, “Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel,” Opt. Commun. 284, 691–696 (2011).
  25. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).
  26. Y. Cao, Y. Zhao, X. Yu, and Y. Wu, “Resource assignment strategy in optical networks integrated with quantum key distribution,” J. Opt. Commun. Netw. (to be published).
  27. G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Trans. Am. Inst. Electr. Eng. 55, 109–115 (1926).
  28. C. E. Shannon, “Communication theory of secrecy systems,” Bell Labs Tech. J. 28(4), 656–715 (1949).
  29. P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20(13), 14030–14041 (2012).
    [PubMed]
  30. P. Eraerds, N. Walenta, M. Legr’e, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).
  31. G. Sharma and S. Kalra, “A novel scheme for data security in cloud computing using quantum cryptography,” in Proceedings of AICTC2016, Bikaner, India, Aug. 2016.
  32. National Institute of Standards and Technology (NIST), “Advanced Encryption Standard (AES),” Federal Information Processing Standard (FIPS) 197, Nov. 2001.
  33. G. V. Assche, Quantum Cryptography and Secret-Key Distillation (Cambridge University, 2006).
  34. P. Derbez, P. A. Fouque, and J. Jean, “Improved key recovery attacks on reduced-round AES in the single-key setting,” in Proceedings of EUROCRYPT2013, Athens, Greece, May 2013.
  35. W. Stallings, Cryptography and Network Security: Principles and Practice (Prentice Hall, 2011).

2017 (2)

2016 (2)

2015 (2)

P. J. Winzer, “Scaling optical fiber networks: challenges and solutions,” Opt. Photonics News 26(3), 28–35 (2015).

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

2014 (4)

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).

Y. Zhao, R. He, H. Chen, J. Zhang, Y. Ji, H. Zheng, Y. Lin, and X. Wang, “Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks,” Opt. Express 22(8), 9538–9547 (2014).
[PubMed]

T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” J. Lightwave Technol. 32(13), 2332–2339 (2014).

2013 (1)

R. V. Meter and J. Touch, “Designing quantum repeater networks,” IEEE Commun. Mag. 51(8), 64–71 (2013).

2012 (1)

2011 (2)

H. Kawahara, A. Medhipour, and K. Inoue, “Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel,” Opt. Commun. 284, 691–696 (2011).

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).

2010 (3)

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010).

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12(10), 103042 (2010).

P. Eraerds, N. Walenta, M. Legr’e, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).

2009 (2)

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1591–1601 (2009).

1999 (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
[PubMed]

1949 (1)

C. E. Shannon, “Communication theory of secrecy systems,” Bell Labs Tech. J. 28(4), 656–715 (1949).

1926 (1)

G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Trans. Am. Inst. Electr. Eng. 55, 109–115 (1926).

Aguado, A.

Alléaume, R.

Anisimov, A. A.

Bahrani, S.

S. Bahrani, M. Razavi, and J. A. Salehi, “Optimal wavelength allocation in hybrid quantum-classical networks,” in Proceedings of EUSIPCO2016, Budapest, Hungary, Aug. 2016.

Bannik, O. I.

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984, 175–179.

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984, 175–179.

Buller, G. S.

Cao, Y.

Y. Cao, Y. Zhao, X. Yu, and Y. Wu, “Resource assignment strategy in optical networks integrated with quantum key distribution,” J. Opt. Commun. Netw. (to be published).

Chapuran, T. E.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Chau, H. F.

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
[PubMed]

Chen, H.

Chen, K.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Chen, L. K.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Chen, T. Y.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Chen, Z. B.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Chistyakov, V. V.

Choi, I.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

Collins, R. J.

Curty, M.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).

da Silva, T. F.

Dallmann, N.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Debuisschert, T.

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).

Derbez, P.

P. Derbez, P. A. Fouque, and J. Jean, “Improved key recovery attacks on reduced-round AES in the single-key setting,” in Proceedings of EUROCRYPT2013, Athens, Greece, May 2013.

Diamanti, E.

Dixon, A. R.

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010).

Dynes, J. F.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010).

Egorov, V. I.

Eraerds, P.

P. Eraerds, N. Walenta, M. Legr’e, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).

Erven, C.

Fok, M. P.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).

Fossier, S.

Fouque, P. A.

P. Derbez, P. A. Fouque, and J. Jean, “Improved key recovery attacks on reduced-round AES in the single-key setting,” in Proceedings of EUROCRYPT2013, Athens, Greece, May 2013.

Furdek, M.

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).

Gisin, N.

P. Eraerds, N. Walenta, M. Legr’e, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).

Gleim, A. V.

Grangier, P.

Haigh, P. A.

He, R.

Hughes, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Hugues-Salas, E.

Inoue, K.

H. Kawahara, A. Medhipour, and K. Inoue, “Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel,” Opt. Commun. 284, 691–696 (2011).

Ivanova, A. E.

Jean, J.

P. Derbez, P. A. Fouque, and J. Jean, “Improved key recovery attacks on reduced-round AES in the single-key setting,” in Proceedings of EUROCRYPT2013, Athens, Greece, May 2013.

Ji, Y.

Jouguet, P.

Ju, L.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Kalra, S.

G. Sharma and S. Kalra, “A novel scheme for data security in cloud computing using quantum cryptography,” in Proceedings of AICTC2016, Bikaner, India, Aug. 2016.

Kawahara, H.

H. Kawahara, A. Medhipour, and K. Inoue, “Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel,” Opt. Commun. 284, 691–696 (2011).

Kennard, J. E.

Kozlov, S. A.

Kunz-Jacques, S.

Kynev, S. M.

Legr’e, M.

P. Eraerds, N. Walenta, M. Legr’e, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).

Leverrier, A.

Lin, Y.

Lo, H. K.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12(10), 103042 (2010).

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
[PubMed]

Lord, A.

Lucamarini, M.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

Maeda, W.

W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1591–1601 (2009).

Marhuenda, J.

McCabe, K. P.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

McNown, S. R.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Medhipour, A.

H. Kawahara, A. Medhipour, and K. Inoue, “Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel,” Opt. Commun. 284, 691–696 (2011).

Meter, R. V.

R. V. Meter and J. Touch, “Designing quantum repeater networks,” IEEE Commun. Mag. 51(8), 64–71 (2013).

Nazarov, Y. V.

Nejabati, R.

Nordholt, J. E.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

O’Callaghan, G.

S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A survey,” in Proceedings of IEEE SDN Future Netw. Services, Trento, Italy, 1–7 (2013).

Pache, P.

Painchault, P.

Pan, J. W.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Patel, K. A.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

Penty, R. V.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

Peters, N. A.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Peterson, C. G.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Price, A. B.

Prucnal, P. R.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).

Qi, B.

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12(10), 103042 (2010).

Qian, L.

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12(10), 103042 (2010).

Rarity, J. G.

Rawat, D. B.

D. B. Rawat and S. R. Reddy, “Software defined networking architecture, security and energy efficiency: a survey,” IEEE Commun. Surveys Tuts. 19(1), 325–346 (2017).

Razavi, M.

S. Bahrani, M. Razavi, and J. A. Salehi, “Optimal wavelength allocation in hybrid quantum-classical networks,” in Proceedings of EUSIPCO2016, Budapest, Hungary, Aug. 2016.

Reddy, S. R.

D. B. Rawat and S. R. Reddy, “Software defined networking architecture, security and energy efficiency: a survey,” IEEE Commun. Surveys Tuts. 19(1), 325–346 (2017).

Rosenberg, D.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Runser, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Salehi, J. A.

S. Bahrani, M. Razavi, and J. A. Salehi, “Optimal wavelength allocation in hybrid quantum-classical networks,” in Proceedings of EUSIPCO2016, Budapest, Hungary, Aug. 2016.

Scott-Hayward, S.

S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A survey,” in Proceedings of IEEE SDN Future Netw. Services, Trento, Italy, 1–7 (2013).

Sezer, S.

S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A survey,” in Proceedings of IEEE SDN Future Netw. Services, Trento, Italy, 1–7 (2013).

Shannon, C. E.

C. E. Shannon, “Communication theory of secrecy systems,” Bell Labs Tech. J. 28(4), 656–715 (1949).

Sharma, G.

G. Sharma and S. Kalra, “A novel scheme for data security in cloud computing using quantum cryptography,” in Proceedings of AICTC2016, Bikaner, India, Aug. 2016.

Sharpe, A. W.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010).

Shields, A. J.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010).

Sibson, P.

Simeonidou, D.

Skorin-Kapov, N.

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).

Smirnov, S. V.

Tajima, A.

W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1591–1601 (2009).

Takahashi, S.

W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1591–1601 (2009).

Tamaki, K.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).

Tanaka, A.

W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1591–1601 (2009).

Temporão, G. P.

Thompson, M. G.

Toliver, P.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Tomita, A.

W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1591–1601 (2009).

Touch, J.

R. V. Meter and J. Touch, “Designing quantum repeater networks,” IEEE Commun. Mag. 51(8), 64–71 (2013).

Tualle-Brouri, R.

Tyagi, K. T.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

Vernam, G. S.

G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Trans. Am. Inst. Electr. Eng. 55, 109–115 (1926).

von der Weid, J. P.

Walenta, N.

P. Eraerds, N. Walenta, M. Legr’e, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).

Wang, L. J.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Wang, X.

Wang, Z.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).

Winzer, P. J.

P. J. Winzer, “Scaling optical fiber networks: challenges and solutions,” Opt. Photonics News 26(3), 28–35 (2015).

Wosinska, L.

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).

Wu, Y.

Y. Cao, Y. Zhao, X. Yu, and Y. Wu, “Resource assignment strategy in optical networks integrated with quantum key distribution,” J. Opt. Commun. Netw. (to be published).

Xavier, G. B.

Xu, M. L.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Yu, X.

Y. Cao, Y. Zhao, X. Yu, and Y. Wu, “Resource assignment strategy in optical networks integrated with quantum key distribution,” J. Opt. Commun. Netw. (to be published).

Yuan, Z. L.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010).

Zbinden, H.

P. Eraerds, N. Walenta, M. Legr’e, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).

Zhang, J.

Zhao, Y.

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Y. Zhao, R. He, H. Chen, J. Zhang, Y. Ji, H. Zheng, Y. Lin, and X. Wang, “Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks,” Opt. Express 22(8), 9538–9547 (2014).
[PubMed]

Y. Cao, Y. Zhao, X. Yu, and Y. Wu, “Resource assignment strategy in optical networks integrated with quantum key distribution,” J. Opt. Commun. Netw. (to be published).

Zheng, H.

Zhu, W.

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12(10), 103042 (2010).

Zsigmond, S.

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).

Appl. Phys. Lett. (3)

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010).

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).

L. J. Wang, L. K. Chen, L. Ju, M. L. Xu, Y. Zhao, K. Chen, Z. B. Chen, T. Y. Chen, and J. W. Pan, “Experimental multiplexing of quantum key distribution with classical optical communication,” Appl. Phys. Lett. 106(8), 081108 (2015).

Bell Labs Tech. J. (1)

C. E. Shannon, “Communication theory of secrecy systems,” Bell Labs Tech. J. 28(4), 656–715 (1949).

IEEE Commun. Mag. (2)

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).

R. V. Meter and J. Touch, “Designing quantum repeater networks,” IEEE Commun. Mag. 51(8), 64–71 (2013).

IEEE Commun. Surveys Tuts. (1)

D. B. Rawat and S. R. Reddy, “Software defined networking architecture, security and energy efficiency: a survey,” IEEE Commun. Surveys Tuts. 19(1), 325–346 (2017).

IEEE J. Sel. Top. Quantum Electron. (1)

W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1591–1601 (2009).

IEEE Trans. Inf. Forensics Security (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).

J. Lightwave Technol. (2)

Nat. Photonics (1)

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).

New J. Phys. (3)

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(5), 045012 (2009).

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12(10), 103042 (2010).

P. Eraerds, N. Walenta, M. Legr’e, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys. 12(6), 063027 (2010).

Opt. Commun. (1)

H. Kawahara, A. Medhipour, and K. Inoue, “Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel,” Opt. Commun. 284, 691–696 (2011).

Opt. Express (3)

Opt. Photonics News (1)

P. J. Winzer, “Scaling optical fiber networks: challenges and solutions,” Opt. Photonics News 26(3), 28–35 (2015).

Science (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
[PubMed]

Trans. Am. Inst. Electr. Eng. (1)

G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Trans. Am. Inst. Electr. Eng. 55, 109–115 (1926).

Other (13)

G. Sharma and S. Kalra, “A novel scheme for data security in cloud computing using quantum cryptography,” in Proceedings of AICTC2016, Bikaner, India, Aug. 2016.

National Institute of Standards and Technology (NIST), “Advanced Encryption Standard (AES),” Federal Information Processing Standard (FIPS) 197, Nov. 2001.

G. V. Assche, Quantum Cryptography and Secret-Key Distillation (Cambridge University, 2006).

P. Derbez, P. A. Fouque, and J. Jean, “Improved key recovery attacks on reduced-round AES in the single-key setting,” in Proceedings of EUROCRYPT2013, Athens, Greece, May 2013.

W. Stallings, Cryptography and Network Security: Principles and Practice (Prentice Hall, 2011).

R. J. Runser, T. E. Chapuran, P. Toliver, M. S. Goodman, J. Jackel, N. Nweke, S. R. McNown, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Demonstration of 1.3 μm quantum key distribution (QKD) compatibility with 1.5 μm metropolitan wavelength division multiplexed (WDM) systems,” in Proceedings of OFC/NFOEC2005, Anaheim, CA, USA, Mar. 2005, paper OWI2.

S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A survey,” in Proceedings of IEEE SDN Future Netw. Services, Trento, Italy, 1–7 (2013).

N. Wolchover, “A tricky path to quantum-safe encryption,” Quanta Magazine, Sept. 2015.

Quantum-Safe Security Working Group, “What is quantum key distribution?” Cloud Security Alliance, Dec. 2015.

Y. Cao, Y. Zhao, X. Yu, and Y. Wu, “Resource assignment strategy in optical networks integrated with quantum key distribution,” J. Opt. Commun. Netw. (to be published).

S. Bahrani, M. Razavi, and J. A. Salehi, “Optimal wavelength allocation in hybrid quantum-classical networks,” in Proceedings of EUSIPCO2016, Budapest, Hungary, Aug. 2016.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984, 175–179.

M. Delgado, “Soft processing techniques for quantum key distribution applications,” PhD thesis, Politecnico di Torino, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 QKD mechanism based on BB84 protocol.
Fig. 2
Fig. 2 (a) QKP in point-to-point QKD system; (b) Wavelength allocation for QKPs and SDON.
Fig. 3
Fig. 3 (a) QKD over SDON architecture; (b) The configuration signaling procedure.
Fig. 4
Fig. 4 Key-assignment and key-updating for control messages.
Fig. 5
Fig. 5 Key-assignment and key-updating for services with different security requirements based on (a) case 1: time complexity of attacks and (b) case 2: data complexity of attacks.
Fig. 6
Fig. 6 NSFNET topology (14 nodes, 21 links).
Fig. 7
Fig. 7 SPc and BP versus traffic load under the (a) unblocked and (b) blocked scenarios.
Fig. 8
Fig. 8 SPd versus traffic load with different Nd under the SPc = 1 and unblocked scenario. (a) case 1 (ΔT = 50 s, k = 10); (b) case 2 (ΔD = 1.5 Tbit, k = 10)
Fig. 9
Fig. 9 SPd versus traffic load with different key-updating period intervals considered under the SPc = 1 and unblocked scenario. (a) considering different ΔT in case 1 (Nd = 900, k = 10); (b) considering different ΔD in case 2 (Nd = 1200, k = 10)
Fig. 10
Fig. 10 SPd versus traffic load with different k considered under the SPc = 1 and unblocked scenario. (a) case 1 (Nd = 900, ΔT = 50 s); (b) case 2 (Nd = 1200, ΔD = 1.5 Tbit)
Fig. 11
Fig. 11 Case 1. (a) SPd-r and SPd-i under the SPc = 1 and blocked scenario; (b) SPd-r and SPd-i under the SPc < 1 and unblocked scenario; (c) SPd-r under the SPc < 1 and blocked scenario
Fig. 12
Fig. 12 Case 2. (a) SPd-r and SPd-i under the SPc = 1 and blocked scenario; (b) SPd-r and SPd-i under the SPc < 1 and unblocked scenario; (c) SPd-r under the SPc < 1 and blocked scenario

Tables (2)

Tables Icon

Table 1 Notations and Definitions.

Tables Icon

Table 2 RWKA Algorithm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S L T =[ u l 1 , T 1 u l 1 , T 2 u l 1 , T k u l 2 , T 1 u l 2 , T 2 u l 2 , T k u l 3 , T 1 u l 3 , T 2 u l 3 , T k ]
S L D =[ u l 1 , D 1 u l 1 , D 2 u l 1 , D k u l 2 , D 1 u l 2 , D 2 u l 2 , D k u l 3 , D 1 u l 3 , D 2 u l 3 , D k ]
N rc = l i ( h r +1 )
N rt = l i t h T k
N rd = l i b r t h D k

Metrics