Abstract

We present a fiber-integrated laser enabling independent tuning of two emission wavelengths with a synchronized pulsed emission. The discrete tuning concept comprises a theta cavity fiber laser (TCFL), a fiber Bragg grating (FBG) array as a versatile spectral filter, facilitating tailored tuning ranges, and optical gating to control the emission spectrum. A novel electrical driving scheme uniquely enables independently tunable multi-wavelength emission from a single laser oscillator. Tunable dual-wavelength emission is experimentally investigated with a ytterbium (Yb)-doped TCFL using an FBG array with 11 gratings. Over a tuning range of 25 nm, 55 wavelength pairs have been demonstrated with high signal contrast (≈ 40 dB) and narrow linewidth (< 40GHz). Based on the demands of prospective applications, pulse synchronicity is studied with a fiber-based time-delay spectrometer (TDS) simultaneously measuring the joint temporal and spectral pulse properties down to a single-pulse analysis. Accordingly, tunable and fully synchronized dual-wavelength emissions have been verified by driving the TCFL with optimized electrical gating parameters. This unique operation mode achieved in a cost-efficient fiber-integrated laser design targets novel applications e.g. in nonlinear spectroscopy and biophotonics.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays

Tobias Tiess, Christoph Chojetzki, Manfred Rothhardt, Hartmut Bartelt, and Matthias Jäger
Opt. Express 23(15) 19634-19645 (2015)

Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout

Tobias Tiess, Martin Becker, Manfred Rothhardt, Hartmut Bartelt, and Matthias Jäger
Opt. Lett. 42(6) 1125-1128 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, Tunable Laser Applications, 3rd ed. (CRC Press, 2016).
  2. W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles, 4th ed. (Springer, 2008).
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B: Opt. Phys. 27, B63–B92 (2010).
    [Crossref]
  4. T. Tiess, C. Chojetzki, M. Rothhardt, H. Bartelt, and M. Jäger, “Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays,” Opt. Express 23, 19634–19645 (2015).
    [Crossref] [PubMed]
  5. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
    [Crossref]
  6. C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
    [Crossref]
  7. T. Tiess, M. Becker, M. Rothhardt, H. Bartelt, and M. Jäger, “Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout,” Opt. Lett. 42, 1125–1128 (2017).
    [Crossref] [PubMed]
  8. R. Frankel and J. Hoose, “Tunable multi-wavelength laser device,” (2002). US Patent App. 10/212, 844.
  9. D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains,” Opt. Express 15, 930–935 (2007).
    [Crossref] [PubMed]
  10. Y.-G. Han, T. V. A. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength Erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31, 697–699 (2006).
    [Crossref] [PubMed]
  11. S. Li and K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
    [Crossref]
  12. J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
    [Crossref]
  13. U. Sharma, C.-S. Kim, J. U. Kang, and N. M. Fried, “Highly stable tunable dual-wavelength q-switched fiber laser for dial applications,” in “Laser Applications to Chemical and Environmental Analysis,” (Optical Society of America, 2004), p. MB3.
  14. R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote. Sens. Environ. 132, 32–39 (2013).
    [Crossref]
  15. T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
    [Crossref] [PubMed]
  16. T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
    [Crossref]
  17. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
    [Crossref] [PubMed]
  18. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011).
    [Crossref] [PubMed]
  19. D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with gase crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5, 82–87 (2017).
    [Crossref]
  20. R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5 – 16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37, 3513–3515 (2012).
    [Crossref] [PubMed]
  21. M. Giguere, V. N. Dang, and J. Salhany, “Mid-IR laser source is widely tunable for standoff explosives detection,” Laser Focus World 51, 59–61 (2015).
  22. F. Théberge, M. Châteauneuf, J. Dubois, A. Villeneuve, J. Salhany, and B. Burgoyne, “Tunable mid-infrared generation using a synchronized programmable fiber lasers,” in “2011 IEEE Photonics Society Summer Topical Meeting Series,” (2011), pp. 71–72.
  23. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-stokes raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006).
    [Crossref] [PubMed]
  24. R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable dual-wavelength all-pm fiber ring laser,” IEEE Photon. Technol. Lett. 14, 287–289 (2002).
    [Crossref]
  25. H. B. Sun, X. M. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength Erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010).
    [Crossref]
  26. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength Erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
    [Crossref] [PubMed]
  27. Y. Wei and B. Sun, “Wavelength spacing tunable dual-wavelength single-longitudinal-mode fiber ring laser based on fiber Bragg gratings,” Laser Phys. 19, 1252–1256 (2009).
    [Crossref]
  28. T. Tiess, M. Rothhardt, M. Jäger, and H. Bartelt, “All-fiber time-delay spectrometer for simultaneous spectral and temporal laser pulse characterization in the nanosecond range,” Appl. Opt. 52, 1161–1167 (2013).
    [Crossref] [PubMed]
  29. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16, 19169–19178 (2008).
    [Crossref]
  30. T. Tiess, S. Junaid, M. Becker, M. Rothhardt, H. Bartelt, and M. Jäger, “Discretely tunable Thulium-doped fiber-based polarization-maintaining master oscillator power amplifier using fiber bragg grating arrays as spectral filters,” Opt. Eng. 55, 064106 (2016).
    [Crossref]

2017 (2)

2016 (1)

T. Tiess, S. Junaid, M. Becker, M. Rothhardt, H. Bartelt, and M. Jäger, “Discretely tunable Thulium-doped fiber-based polarization-maintaining master oscillator power amplifier using fiber bragg grating arrays as spectral filters,” Opt. Eng. 55, 064106 (2016).
[Crossref]

2015 (4)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

M. Giguere, V. N. Dang, and J. Salhany, “Mid-IR laser source is widely tunable for standoff explosives detection,” Laser Focus World 51, 59–61 (2015).

T. Tiess, C. Chojetzki, M. Rothhardt, H. Bartelt, and M. Jäger, “Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays,” Opt. Express 23, 19634–19645 (2015).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
[Crossref] [PubMed]

2013 (2)

T. Tiess, M. Rothhardt, M. Jäger, and H. Bartelt, “All-fiber time-delay spectrometer for simultaneous spectral and temporal laser pulse characterization in the nanosecond range,” Appl. Opt. 52, 1161–1167 (2013).
[Crossref] [PubMed]

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote. Sens. Environ. 132, 32–39 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (3)

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
[Crossref] [PubMed]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B: Opt. Phys. 27, B63–B92 (2010).
[Crossref]

H. B. Sun, X. M. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength Erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010).
[Crossref]

2009 (1)

Y. Wei and B. Sun, “Wavelength spacing tunable dual-wavelength single-longitudinal-mode fiber ring laser based on fiber Bragg gratings,” Laser Phys. 19, 1252–1256 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (2)

2005 (2)

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength Erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[Crossref] [PubMed]

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[Crossref]

2002 (1)

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable dual-wavelength all-pm fiber ring laser,” IEEE Photon. Technol. Lett. 14, 287–289 (2002).
[Crossref]

2001 (1)

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

1999 (1)

S. Li and K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Askins, C.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Bartelt, H.

Baumgartl, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

Becker, M.

Bergmann, J.

Brückner, S.

Burgoyne, B.

F. Théberge, M. Châteauneuf, J. Dubois, A. Villeneuve, J. Salhany, and B. Burgoyne, “Tunable mid-infrared generation using a synchronized programmable fiber lasers,” in “2011 IEEE Photonics Society Summer Topical Meeting Series,” (2011), pp. 71–72.

Carrasco, S.

Chan, K. T.

S. Li and K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
[Crossref]

Châteauneuf, M.

F. Théberge, M. Châteauneuf, J. Dubois, A. Villeneuve, J. Salhany, and B. Burgoyne, “Tunable mid-infrared generation using a synchronized programmable fiber lasers,” in “2011 IEEE Photonics Society Summer Topical Meeting Series,” (2011), pp. 71–72.

Chen, D.

Chojetzki, C.

T. Tiess, C. Chojetzki, M. Rothhardt, H. Bartelt, and M. Jäger, “Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays,” Opt. Express 23, 19634–19645 (2015).
[Crossref] [PubMed]

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Chun, H. S.

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B: Opt. Phys. 27, B63–B92 (2010).
[Crossref]

Dang, V. N.

M. Giguere, V. N. Dang, and J. Salhany, “Mid-IR laser source is widely tunable for standoff explosives detection,” Laser Focus World 51, 59–61 (2015).

Danson, F.

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote. Sens. Environ. 132, 32–39 (2013).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles, 4th ed. (Springer, 2008).

Duarte, F. J.

F. J. Duarte, Tunable Laser Applications, 3rd ed. (CRC Press, 2016).

Dubois, J.

F. Théberge, M. Châteauneuf, J. Dubois, A. Villeneuve, J. Salhany, and B. Burgoyne, “Tunable mid-infrared generation using a synchronized programmable fiber lasers,” in “2011 IEEE Photonics Society Summer Topical Meeting Series,” (2011), pp. 71–72.

Feng, J.

Franke, M.

Frankel, R.

R. Frankel and J. Hoose, “Tunable multi-wavelength laser device,” (2002). US Patent App. 10/212, 844.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Fried, N. M.

U. Sharma, C.-S. Kim, J. U. Kang, and N. M. Fried, “Highly stable tunable dual-wavelength q-switched fiber laser for dial applications,” in “Laser Applications to Chemical and Environmental Analysis,” (Optical Society of America, 2004), p. MB3.

Ganikhanov, F.

Gaulton, R.

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote. Sens. Environ. 132, 32–39 (2013).
[Crossref]

Giessen, H.

Giguere, M.

M. Giguere, V. N. Dang, and J. Salhany, “Mid-IR laser source is widely tunable for standoff explosives detection,” Laser Focus World 51, 59–61 (2015).

Gong, Y. K.

H. B. Sun, X. M. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength Erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010).
[Crossref]

Gottschall, T.

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

Gunawan, O.

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote. Sens. Environ. 132, 32–39 (2013).
[Crossref]

Guo, J.

Han, S.-P.

Han, Y.-G.

He, S.

He, Y.

Hegenbarth, R.

Hoose, J.

R. Frankel and J. Hoose, “Tunable multi-wavelength laser device,” (2002). US Patent App. 10/212, 844.

Ito, H.

Jäger, M.

Jauregui, C.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

Jeon, M. Y.

Jeong, J. S.

Junaid, S.

T. Tiess, S. Junaid, M. Becker, M. Rothhardt, H. Bartelt, and M. Jäger, “Discretely tunable Thulium-doped fiber-based polarization-maintaining master oscillator power amplifier using fiber bragg grating arrays as spectral filters,” Opt. Eng. 55, 064106 (2016).
[Crossref]

Kang, J. U.

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable dual-wavelength all-pm fiber ring laser,” IEEE Photon. Technol. Lett. 14, 287–289 (2002).
[Crossref]

U. Sharma, C.-S. Kim, J. U. Kang, and N. M. Fried, “Highly stable tunable dual-wavelength q-switched fiber laser for dial applications,” in “Laser Applications to Chemical and Environmental Analysis,” (Optical Society of America, 2004), p. MB3.

Katz, M.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Kim, C.-S.

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable dual-wavelength all-pm fiber ring laser,” IEEE Photon. Technol. Lett. 14, 287–289 (2002).
[Crossref]

U. Sharma, C.-S. Kim, J. U. Kang, and N. M. Fried, “Highly stable tunable dual-wavelength q-switched fiber laser for dial applications,” in “Laser Applications to Chemical and Environmental Analysis,” (Optical Society of America, 2004), p. MB3.

Kim, N.

Koo, K.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Kopf, D.

Lam, Y. L.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Lee, C. W.

Lee, S. B.

Leem, Y. A.

Li, S.

S. Li and K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
[Crossref]

Li, X. H.

H. B. Sun, X. M. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength Erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010).
[Crossref]

Limpert, J.

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

Lindner, E.

Liu, H.

Liu, J.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

Liu, P.

Liu, X.

Liu, X. M.

H. B. Sun, X. M. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength Erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010).
[Crossref]

Lu, C.

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength Erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[Crossref] [PubMed]

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

Lu, F.

Meyer, T.

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

Minamide, H.

Mueller, H.-R.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Ng, J.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B: Opt. Phys. 27, B63–B92 (2010).
[Crossref]

Notake, T.

Ohno, S.

Ommer, J.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Park, K. H.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Popp, J.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
[Crossref] [PubMed]

Putnam, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

Qin, S.

Ramirez, F.

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote. Sens. Environ. 132, 32–39 (2013).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B: Opt. Phys. 27, B63–B92 (2010).
[Crossref]

Rothhardt, M.

Salhany, J.

M. Giguere, V. N. Dang, and J. Salhany, “Mid-IR laser source is widely tunable for standoff explosives detection,” Laser Focus World 51, 59–61 (2015).

F. Théberge, M. Châteauneuf, J. Dubois, A. Villeneuve, J. Salhany, and B. Burgoyne, “Tunable mid-infrared generation using a synchronized programmable fiber lasers,” in “2011 IEEE Photonics Society Summer Topical Meeting Series,” (2011), pp. 71–72.

Sarkisov, S.

Schmitt, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
[Crossref] [PubMed]

Schuster, K.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Seitz, W.

Sharma, U.

U. Sharma, C.-S. Kim, J. U. Kang, and N. M. Fried, “Highly stable tunable dual-wavelength q-switched fiber laser for dial applications,” in “Laser Applications to Chemical and Environmental Analysis,” (Optical Society of America, 2004), p. MB3.

Shi, J.

Shi, W.

Shin, J.

Sova, R. M.

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable dual-wavelength all-pm fiber ring laser,” IEEE Photon. Technol. Lett. 14, 287–289 (2002).
[Crossref]

Steinmann, A.

Sun, B.

Y. Wei and B. Sun, “Wavelength spacing tunable dual-wavelength single-longitudinal-mode fiber ring laser based on fiber Bragg gratings,” Laser Phys. 19, 1252–1256 (2009).
[Crossref]

Sun, H. B.

H. B. Sun, X. M. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength Erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010).
[Crossref]

Tang, L.

Tang, M.

Théberge, F.

F. Théberge, M. Châteauneuf, J. Dubois, A. Villeneuve, J. Salhany, and B. Burgoyne, “Tunable mid-infrared generation using a synchronized programmable fiber lasers,” in “2011 IEEE Photonics Society Summer Topical Meeting Series,” (2011), pp. 71–72.

Tiess, T.

Tjin, S. C.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

Tran, T. V. A.

Tsang, Y. H.

Tünnermann, A.

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

Unger, S.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Villeneuve, A.

F. Théberge, M. Châteauneuf, J. Dubois, A. Villeneuve, J. Salhany, and B. Burgoyne, “Tunable mid-infrared generation using a synchronized programmable fiber lasers,” in “2011 IEEE Photonics Society Summer Topical Meeting Series,” (2011), pp. 71–72.

Wang, L. R.

H. B. Sun, X. M. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength Erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010).
[Crossref]

Wang, Y.

Wei, Y.

Y. Wei and B. Sun, “Wavelength spacing tunable dual-wavelength single-longitudinal-mode fiber ring laser based on fiber Bragg gratings,” Laser Phys. 19, 1252–1256 (2009).
[Crossref]

Xie, X. S.

Xu, D.

Yan, C.

Yan, D.

Yang, X.

Yao, J.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with gase crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5, 82–87 (2017).
[Crossref]

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

Yee, D.-S.

Zhong, K.

Zhou, X.

Zhou, Y.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

S. Li and K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
[Crossref]

R. M. Sova, C.-S. Kim, and J. U. Kang, “Tunable dual-wavelength all-pm fiber ring laser,” IEEE Photon. Technol. Lett. 14, 287–289 (2002).
[Crossref]

J. Lightw. Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol. 15, 1442–1463 (1997).
[Crossref]

J. Opt. Soc. Am. B: Opt. Phys. (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B: Opt. Phys. 27, B63–B92 (2010).
[Crossref]

Laser Focus World (1)

M. Giguere, V. N. Dang, and J. Salhany, “Mid-IR laser source is widely tunable for standoff explosives detection,” Laser Focus World 51, 59–61 (2015).

Laser Phys. (2)

H. B. Sun, X. M. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength Erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010).
[Crossref]

Y. Wei and B. Sun, “Wavelength spacing tunable dual-wavelength single-longitudinal-mode fiber ring laser based on fiber Bragg gratings,” Laser Phys. 19, 1252–1256 (2009).
[Crossref]

Laser. Photon. Rev. (1)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-stokes raman scattering microscopy,” Laser. Photon. Rev. 9, 435–451 (2015).
[Crossref]

Opt. Commun. (1)

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191, 341–345 (2001).
[Crossref]

Opt. Eng. (2)

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[Crossref]

T. Tiess, S. Junaid, M. Becker, M. Rothhardt, H. Bartelt, and M. Jäger, “Discretely tunable Thulium-doped fiber-based polarization-maintaining master oscillator power amplifier using fiber bragg grating arrays as spectral filters,” Opt. Eng. 55, 064106 (2016).
[Crossref]

Opt. Express (7)

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength Erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[Crossref] [PubMed]

D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains,” Opt. Express 15, 930–935 (2007).
[Crossref] [PubMed]

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16, 19169–19178 (2008).
[Crossref]

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
[Crossref] [PubMed]

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011).
[Crossref] [PubMed]

T. Tiess, C. Chojetzki, M. Rothhardt, H. Bartelt, and M. Jäger, “Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays,” Opt. Express 23, 19634–19645 (2015).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968–23977 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Photon. Res. (1)

Remote. Sens. Environ. (1)

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote. Sens. Environ. 132, 32–39 (2013).
[Crossref]

Other (5)

U. Sharma, C.-S. Kim, J. U. Kang, and N. M. Fried, “Highly stable tunable dual-wavelength q-switched fiber laser for dial applications,” in “Laser Applications to Chemical and Environmental Analysis,” (Optical Society of America, 2004), p. MB3.

R. Frankel and J. Hoose, “Tunable multi-wavelength laser device,” (2002). US Patent App. 10/212, 844.

F. J. Duarte, Tunable Laser Applications, 3rd ed. (CRC Press, 2016).

W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles, 4th ed. (Springer, 2008).

F. Théberge, M. Châteauneuf, J. Dubois, A. Villeneuve, J. Salhany, and B. Burgoyne, “Tunable mid-infrared generation using a synchronized programmable fiber lasers,” in “2011 IEEE Photonics Society Summer Topical Meeting Series,” (2011), pp. 71–72.

Supplementary Material (1)

NameDescription
» Visualization 1       The applied electrical gating singal (top) as well as the corresponding emission spectrum (bottom) are shown for tunable dual-wavelength emission

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Design principle of the pulsed discretely tunable dual-wavelength theta cavity fiber laser (TCFL). The laser resonator comprises a middle branch with the FBG array as versatile spectral filter and a modulator to control the filter response by optical gating. The modulator is driven by an electrical signal generated by an arbitrary function generator (AFG) applying a periodic sequence (period TMP) with three transmission windows. The corresponding gating parameters (amplitudes A1, A2, A3 and delays τ2–3 and τ1–3) control both emission wavelengths λL1 and λL2.

Fig. 2
Fig. 2

The top graph sketches an example electrical gating function applied to the modulator to achieve dual-wavelength emission. The gating parameters are listed in the green box in the lower graph that shows the corresponding emission spectrum of the laser demonstrating two emission lines at around 1062 nm and 1077 nm. Correspondingly, a scan over different wavelengths pairs is highlighted in a video sequence (see Visualization 1).

Fig. 3
Fig. 3

Tuning spectrogram for dual-wavelength emission for different sets of gating parameters (τ1–3, τ2–3, A1, A2, A3, TMP). The graph covers 55 wavelength pairs within a total tuning range of 25 nm based on FBG array A.

Fig. 4
Fig. 4

Experimental setup of the time-delay spectrometer (TDS). The input signal of the tunable dual-wavelength TCFL is split up by a 3dB coupler into a reference branch and an analysis branch with a draw tower grating (DTG) array to spectrally decompose the laser signal in a time-encoded trace. The signals are measured with an oscilloscope (Tektronix DPO70604C, bandwidth 6 GHz) and postprocessed to reconstruct the joint spectral and temporal pulse characteristics.

Fig. 5
Fig. 5

Pulse spectrogram (logarithmic) measured with the TDS with an acquisition averaged over 5000 pulses. The two emission wavelengths λL1 and λL2 are locked to grating 1 and grating 2 of FBG array B. The right graph pictures the reference spectrum recorded with an OSA as well as the reconstructed emission spectrum measured with the TDS (blue). The graph at the bottom shows the reference pulse shape (green) measured with the oscilloscope as well as the reconstructed temporal pulse shape from the TDS analysis, plus separate plots for each wavelength channel.

Fig. 6
Fig. 6

Pulse spectrogram (logarithmic) measured with the TDS with an acquisition averaged over 5000 pulses. The two emission wavelengths λL1 and λL2 are locked to grating 1 and grating 2 of FBG array B. The gating parameters are optimized for simultaneous emission of both wavelengths.

Fig. 7
Fig. 7

Pulse spectrogram (logarithmic) measured with the TDS in single-pulse acquisition for an exemplary dual-wavelength emission with λL1 and λL2 locked to grating 1 and grating 2 of FBG array B. The gating parameters are optimized for simultaneous emission of both wavelengths

Tables (1)

Tables Icon

Table 1 Design specifications of FBG arrays for the TCFL

Metrics