Abstract

We present a novel hybrid glass-polymer micromechanical sensor by combining two femtosecond laser direct writing processes: laser illumination followed by chemical etching of glass and two-photon polymerization. This incorporation of techniques demonstrates the capability of combining mechanical deformable devices made of silica with an integrated polymer structure for passive chemical sensing application. We demonstrate that such a sensor could be utilized for investigating the elastic properties of polymeric microstructures fabricated via the two-photon polymerization technique. Moreover, we show that polymeric microstructure stiffness increases when immersed in organic liquids.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall
Opt. Lett. 28(5) 301-303 (2003)

Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass

Allison Schaap and Yves Bellouard
Opt. Mater. Express 3(9) 1428-1437 (2013)

3D fabrication of all-polymer conductive microstructures by two photon polymerization

Kestutis Kurselis, Roman Kiyan, Victor N. Bagratashvili, Vladimir K. Popov, and Boris N. Chichkov
Opt. Express 21(25) 31029-31035 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38, L1146 (1999).
    [Crossref]
  2. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
    [Crossref]
  3. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
    [Crossref] [PubMed]
  4. K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
    [Crossref] [PubMed]
  5. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [Crossref] [PubMed]
  6. J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics,” Opt. Lett. 28, 301–303 (2003).
    [Crossref] [PubMed]
  7. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
    [Crossref]
  8. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C. 113, 11560–11566 (2009).
    [Crossref]
  9. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
    [Crossref]
  10. L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
    [Crossref] [PubMed]
  11. D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
    [Crossref]
  12. D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).
  13. M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
    [Crossref] [PubMed]
  14. J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
    [Crossref]
  15. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17, 2143–2148 (2009).
    [Crossref] [PubMed]
  16. H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
    [Crossref]
  17. Q. Sun, K. Ueno, and H. Misawa, “In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process,” Opt. Lett. 37, 710–712 (2012).
    [Crossref] [PubMed]
  18. K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett. 34, 566–568 (2009).
    [Crossref] [PubMed]
  19. S. M. Kuebler, A. Narayanan, D. E. Karas, and K. M. Wilburn, “Low-distortion surface functionalization of polymeric microstructures,” Macromol. Chem. Phys. 215, 1533–1542 (2014).
    [Crossref]
  20. S. Rekštytė, D. Paipulas, M. Malinauskas, and V. Mizeikis, “Microactuation and sensing using reversible deformations of laser-written polymeric structures,” Nanotechnology 28, 124001 (2017).
    [Crossref]
  21. Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology 19, 375304 (2008).
    [Crossref] [PubMed]
  22. Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
    [Crossref]
  23. T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, 6 (2012).
    [Crossref]
  24. H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
    [Crossref] [PubMed]
  25. P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
    [Crossref]
  26. H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79, 3173–3175 (2001).
    [Crossref]
  27. S. Nakanishi, S. Shoji, S. Kawata, and H.-B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys Lett. 91, 063112 (2007).
    [Crossref]
  28. Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
    [Crossref]
  29. T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
    [Crossref]
  30. C. N. LaFratta and T. Baldacchini, “Two-photon polymerization metrology: Characterization methods of mechanisms and microstructures,” Micromachines 8, 101 (2017).
    [Crossref]
  31. A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
    [Crossref]
  32. Y. Bellouard, A.A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
    [Crossref] [PubMed]
  33. Y. Bellouard, “On the bending strength of fused silica flexures fabricated by ultrafast lasers [Invited],” Opt. Mater. Express 1, 816–831 (2011).
    [Crossref]
  34. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
    [Crossref]
  35. A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
    [Crossref]
  36. W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
    [Crossref]
  37. S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
    [Crossref]

2017 (3)

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

S. Rekštytė, D. Paipulas, M. Malinauskas, and V. Mizeikis, “Microactuation and sensing using reversible deformations of laser-written polymeric structures,” Nanotechnology 28, 124001 (2017).
[Crossref]

C. N. LaFratta and T. Baldacchini, “Two-photon polymerization metrology: Characterization methods of mechanisms and microstructures,” Micromachines 8, 101 (2017).
[Crossref]

2016 (3)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

2015 (3)

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
[Crossref]

T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
[Crossref]

2014 (3)

S. M. Kuebler, A. Narayanan, D. E. Karas, and K. M. Wilburn, “Low-distortion surface functionalization of polymeric microstructures,” Macromol. Chem. Phys. 215, 1533–1542 (2014).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

2013 (2)

M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
[Crossref] [PubMed]

A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
[Crossref]

2012 (4)

T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, 6 (2012).
[Crossref]

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
[Crossref] [PubMed]

Q. Sun, K. Ueno, and H. Misawa, “In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process,” Opt. Lett. 37, 710–712 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[Crossref]

2009 (3)

2008 (2)

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology 19, 375304 (2008).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

2007 (2)

S. Nakanishi, S. Shoji, S. Kawata, and H.-B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys Lett. 91, 063112 (2007).
[Crossref]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

2005 (2)

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Y. Bellouard, A.A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref] [PubMed]

2004 (2)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
[Crossref] [PubMed]

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

2003 (1)

2001 (2)

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
[Crossref]

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79, 3173–3175 (2001).
[Crossref]

1999 (1)

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38, L1146 (1999).
[Crossref]

1997 (1)

Amato, L.

L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
[Crossref] [PubMed]

Bado, P.

Balciunas, E.

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Baldacchini, T.

C. N. LaFratta and T. Baldacchini, “Two-photon polymerization metrology: Characterization methods of mechanisms and microstructures,” Micromachines 8, 101 (2017).
[Crossref]

T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
[Crossref]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Baltriukiene, D.

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Bayindir, Z.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Bellini, N.

L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
[Crossref] [PubMed]

Bellouard, Y.

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Bukelskiene, V.

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Cerullo, G.

L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
[Crossref] [PubMed]

Charitidis, C. A.

A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
[Crossref]

Chatzinikolaidou, M.

A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
[Crossref]

Chen, Q.-D.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett. 34, 566–568 (2009).
[Crossref] [PubMed]

Cheng, Y.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics,” Opt. Lett. 28, 301–303 (2003).
[Crossref] [PubMed]

Chichkov, B. N.

Cronauer, C.

Cui, H.

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology 19, 375304 (2008).
[Crossref] [PubMed]

Danilevicius, P.

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Domann, G.

Dong, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

Du, X.-B.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

Duan, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

Dugan, M.

Eaton, S.

L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
[Crossref] [PubMed]

Egbert, A.

Farsari, M.

A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
[Crossref]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17, 2143–2148 (2009).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Fotakis, C.

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17, 2143–2148 (2009).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Fourkas, J. T.

T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, 6 (2012).
[Crossref]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Frohlich, L.

Gadonas, R.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
[Crossref]

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Gailevicius, D.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Gamaly, E.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Gong, Q.

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology 19, 375304 (2008).
[Crossref] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Grech, J. S.

T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
[Crossref]

Gu, Y.

L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
[Crossref] [PubMed]

Hanada, Y.

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

Hansen, M.

M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
[Crossref] [PubMed]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C. 113, 11560–11566 (2009).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

He, Y.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

Hirao, K.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38, L1146 (1999).
[Crossref]

Hjorto, G.

M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
[Crossref] [PubMed]

Houbertz, R.

Ikegami, T.

T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, 6 (2012).
[Crossref]

Jarašiene, R.

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Jiang, L.

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

Jonavicius, T.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Juodkazis, S.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
[Crossref]

Karas, D. E.

S. M. Kuebler, A. Narayanan, D. E. Karas, and K. M. Wilburn, “Low-distortion surface functionalization of polymeric microstructures,” Macromol. Chem. Phys. 215, 1533–1542 (2014).
[Crossref]

Kawano, H.

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

Kawata, S.

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett. 34, 566–568 (2009).
[Crossref] [PubMed]

S. Nakanishi, S. Shoji, S. Kawata, and H.-B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys Lett. 91, 063112 (2007).
[Crossref]

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79, 3173–3175 (2001).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[Crossref] [PubMed]

Kim, M.

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C. 113, 11560–11566 (2009).
[Crossref]

Kondo, Y.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38, L1146 (1999).
[Crossref]

Kraniauskas, A.

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Kuebler, S. M.

S. M. Kuebler, A. Narayanan, D. E. Karas, and K. M. Wilburn, “Low-distortion surface functionalization of polymeric microstructures,” Macromol. Chem. Phys. 215, 1533–1542 (2014).
[Crossref]

LaFratta, C. N.

C. N. LaFratta and T. Baldacchini, “Two-photon polymerization metrology: Characterization methods of mechanisms and microstructures,” Micromachines 8, 101 (2017).
[Crossref]

T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
[Crossref]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Larsen, N.

M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
[Crossref] [PubMed]

Lee, K.

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

Li, D.

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

Li, Y.

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology 19, 375304 (2008).
[Crossref] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

Liu, W.

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

Liu, Y.

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

Lolas, G.

A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
[Crossref]

Lu, P.

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

Lu, Y.

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Malinauskas, M.

S. Rekštytė, D. Paipulas, M. Malinauskas, and V. Mizeikis, “Microactuation and sensing using reversible deformations of laser-written polymeric structures,” Nanotechnology 28, 124001 (2017).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
[Crossref]

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Marcinkevicius, A.

Maruo, S.

T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, 6 (2012).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[Crossref] [PubMed]

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C. 113, 11560–11566 (2009).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
[Crossref]

Matulaitiene, I.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
[Crossref]

Met, O.

M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
[Crossref] [PubMed]

Midorikawa, K.

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

Misawa, H.

Mitsuyu, T.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38, L1146 (1999).
[Crossref]

Miwa, M.

Miyawaki, A.

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

Mizeikis, V.

S. Rekštytė, D. Paipulas, M. Malinauskas, and V. Mizeikis, “Microactuation and sensing using reversible deformations of laser-written polymeric structures,” Nanotechnology 28, 124001 (2017).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[Crossref]

Monaco, K.

T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, 6 (2012).
[Crossref]

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C. 113, 11560–11566 (2009).
[Crossref]

Murazawa, N.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[Crossref]

Nakamura, O.

Nakanishi, S.

S. Nakanishi, S. Shoji, S. Kawata, and H.-B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys Lett. 91, 063112 (2007).
[Crossref]

Narayanan, A.

S. M. Kuebler, A. Narayanan, D. E. Karas, and K. M. Wilburn, “Low-distortion surface functionalization of polymeric microstructures,” Macromol. Chem. Phys. 215, 1533–1542 (2014).
[Crossref]

Naughton, M. J.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Niaura, G.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
[Crossref]

Nishii, J.

Niu, L.-G.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
[Crossref]

Nuñez, V.

T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
[Crossref]

Olsen, M.

M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
[Crossref] [PubMed]

Osellame, R.

L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
[Crossref] [PubMed]

Ostendorf, A.

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Ovsianikov, A.

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17, 2143–2148 (2009).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Paipulas, D.

S. Rekštytė, D. Paipulas, M. Malinauskas, and V. Mizeikis, “Microactuation and sensing using reversible deformations of laser-written polymeric structures,” Nanotechnology 28, 124001 (2017).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
[Crossref]

Popall, M.

Qi, F.

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology 19, 375304 (2008).
[Crossref] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

Qiu, J.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38, L1146 (1999).
[Crossref]

Rekštyte, S.

S. Rekštytė, D. Paipulas, M. Malinauskas, and V. Mizeikis, “Microactuation and sensing using reversible deformations of laser-written polymeric structures,” Nanotechnology 28, 124001 (2017).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Said, A.

Said, A.A.

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Saleh, B. E. A.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Schulz, J.

Serbin, J.

Shizhou, X.

Shoji, S.

Silvain, J.-F.

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

Širmenis, R.

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

Skarmoutsou, A.

A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
[Crossref]

Stewart, J.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Stocker, M. P.

T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, 6 (2012).
[Crossref]

Sugioka, K.

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

Sun, H.

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

Sun, H.-B.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett. 34, 566–568 (2009).
[Crossref] [PubMed]

S. Nakanishi, S. Shoji, S. Kawata, and H.-B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys Lett. 91, 063112 (2007).
[Crossref]

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79, 3173–3175 (2001).
[Crossref]

Sun, Q.

Q. Sun, K. Ueno, and H. Misawa, “In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process,” Opt. Lett. 37, 710–712 (2012).
[Crossref] [PubMed]

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[Crossref]

Sun, Y.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Suwa, T.

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

Svane, I.

M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
[Crossref] [PubMed]

Takada, K.

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett. 34, 566–568 (2009).
[Crossref] [PubMed]

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79, 3173–3175 (2001).
[Crossref]

Tan, D.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

Teich, M. C.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Tian, Y.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

Ueno, K.

Vamvakaki, M.

A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
[Crossref]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17, 2143–2148 (2009).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Vullev, V. I.

T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
[Crossref]

Wang, J.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

Wang, Z.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

Watanabe, M.

Wilburn, K. M.

S. M. Kuebler, A. Narayanan, D. E. Karas, and K. M. Wilburn, “Low-distortion surface functionalization of polymeric microstructures,” Macromol. Chem. Phys. 215, 1533–1542 (2014).
[Crossref]

Wu, D.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
[Crossref]

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett. 34, 566–568 (2009).
[Crossref] [PubMed]

Wu, S.-Z.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
[Crossref]

Xia, H.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett. 34, 566–568 (2009).
[Crossref] [PubMed]

Xiong, W.

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

Xu, J.

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

Yang, H.

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology 19, 375304 (2008).
[Crossref] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

Yoko, T.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38, L1146 (1999).
[Crossref]

Zaccaria, R.

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

Zadoyan, R.

T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
[Crossref]

Zhang, Y.-L.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

Zhou, Y.

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
[Crossref]

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Adv. Mat. (1)

W. Xiong, Y. Liu, L. Jiang, Y. Zhou, D. Li, L. Jiang, J.-F. Silvain, and Y. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mat. 28, 2002–2009 (2016).
[Crossref]

Adv. Mater. (1)

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22, 3204–3207 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Appl. Phys Lett. (2)

S. Nakanishi, S. Shoji, S. Kawata, and H.-B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys Lett. 91, 063112 (2007).
[Crossref]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys Lett. 86, 064105 (2005).
[Crossref]

Appl. Phys. Lett. (3)

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79, 3173–3175 (2001).
[Crossref]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
[Crossref]

H. Sun, T. Suwa, K. Takada, R. Zaccaria, M. Kim, K. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[Crossref]

J Mech. Behav. Biomed. (1)

A. Skarmoutsou, G. Lolas, C. A. Charitidis, M. Chatzinikolaidou, M. Vamvakaki, and M. Farsari, “Nanomechanical properties of hybrid coatings for bone tissue engineering,” J Mech. Behav. Biomed. 25, 48–62 (2013).
[Crossref]

J. Biomed. Opt. (1)

P. Danilevičius, S. Rekštytė, R. Gadonas, M. Malinauskas, E. Balčiunas, R. Jarašienė, D. Baltriukienė, V. Bukelskienė, A. Kraniauskas, and R. Širmenis, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Opt. 17, 081405 (2012).
[Crossref]

J. Micromech. Microeng. (1)

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[Crossref]

J. Phys. Chem. C. (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C. 113, 11560–11566 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, 6 (2012).
[Crossref]

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38, L1146 (1999).
[Crossref]

Lab Chip (3)

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14, 3447–3458 (2014).
[Crossref] [PubMed]

L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12, 1135–1142 (2012).
[Crossref] [PubMed]

M. Olsen, G. Hjorto, M. Hansen, O. Met, I. Svane, and N. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13, 4800–4809 (2013).
[Crossref] [PubMed]

Laser Photon. Rev. (2)

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8, 458–467 (2014).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photon. Rev. 9, 706–712 (2015).
[Crossref]

Light Sci. Appl. (2)

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4, e228 (2015).

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Macromol. Chem. Phys. (1)

S. M. Kuebler, A. Narayanan, D. E. Karas, and K. M. Wilburn, “Low-distortion surface functionalization of polymeric microstructures,” Macromol. Chem. Phys. 215, 1533–1542 (2014).
[Crossref]

Micromachines (1)

C. N. LaFratta and T. Baldacchini, “Two-photon polymerization metrology: Characterization methods of mechanisms and microstructures,” Micromachines 8, 101 (2017).
[Crossref]

Microsyst. Nanoeng. (1)

J. Xu, H. Kawano, W. Liu, Y. Hanada, P. Lu, A. Miyawaki, K. Midorikawa, and K. Sugioka, “Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication,” Microsyst. Nanoeng. 3,, 16078 (2017).
[Crossref]

Nanotechnology (2)

S. Rekštytė, D. Paipulas, M. Malinauskas, and V. Mizeikis, “Microactuation and sensing using reversible deformations of laser-written polymeric structures,” Nanotechnology 28, 124001 (2017).
[Crossref]

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology 19, 375304 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. Express (1)

Proc. SPIE (1)

T. Baldacchini, V. Nuñez, C. N. LaFratta, J. S. Grech, V. I. Vullev, and R. Zadoyan, “Microfabrication of three-dimensional filters for liposome extrusion,” Proc. SPIE 9353, 93530W (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (top-left) Sketch of the glass cantilever with integrated polymeric beam that may induce cantilever deflection due to the shrinkage/swelling effects. (bottom-left) A schematic construction of a polymer beam fabricated by LAE and 2PP methods. (right) Modeled cantilever tip deflection values versus distance along the cantilever where the polymer is integrated. Top graphs are modeled with a constant polymer shrinkage value (in this case 1.2% from original design value (dg)) and a different Young’s modulus (in GPa), while the bottom graph depicts a situation where the Young’s modulus is constant (2 GPa) and shrinkage value is varied. Dashed curves depict maximum deflection trends in both graphs.
Fig. 2
Fig. 2 A sketch of a coupled cantilever system consisting of several cantilevers interlinked with the polymer beam (each polymer segment is identical). A linear system equation that can be used to compute deflection of each cantilever is also included.
Fig. 3
Fig. 3 Fused silica cantilever with SZ2080 polymeric beam fabricated by the hybrid femtosecond laser processing technique. The optical microscope images indicate the deflection of the cantilever after polymer shrunk in air. The picture on the right shows a stereoscopic microscope image of a hybrid sensor.
Fig. 4
Fig. 4 Cantilever deflection induced by polymer shrinkage in various organic liquids and air.
Fig. 5
Fig. 5 (a) Cantilever deflection induced by polymer swelling in organic liquids. (b) Cantilever deflection dependence on the solvent change cycle number.
Fig. 6
Fig. 6 The manufactured cantilever system, consisting of seven interlinked cantilevers. Microscope images are shown on the left and center (cantilevers are immersed in PEN). (right) Deflection of the coupled system in different solvents: solid curves show the least square fit of the data computed from the coupled cantilever model (Fig. 2), fit parameters: PEN (0.40 GPa, 346.4 µm) and ethanol (0.389 GPa, 345.6 µm); dashed curves show the model fit with parameters evaluated from the single cantilever experiment (Fig. 5(a)).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ = E p S p ( L p d g ) ( 3 L g a ) a 2 2 ( E p S p a 3 + 3 E g I g L p ) ;

Metrics