Abstract

We present a dual-wavelength off-axis quasi-common-path digital holography for quantitative phase imaging using polarization-multiplexing in a single shot. Employing an off-axis nearly common-path configuration, our approach separates the two-wavelength information using a polarizing beam splitter, while modulates the orthogonal fringe directions for each wavelength using two retro-reflector mirrors, and thus generates a single multiplexed off-axis interferogram on a monochrome CCD camera. The information of a specimen, including phase and height, is reconstructed through a division algorithm for dual wavelengths with the help of a specimen-free multiplexed interferogram. The experimental results obtained on a square step target and a circular step target illustrate the validity and stability of our setup.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous dual-wavelength off-axis flipping digital holography

Lei Liu, Mingguang Shan, Zhi Zhong, Bin Liu, Gunagyu Luan, Ming Diao, and Yabin Zhang
Opt. Lett. 42(21) 4331-4334 (2017)

Dual-wavelength slightly off-axis digital holographic microscopy

Junwei Min, Baoli Yao, Peng Gao, Rongli Guo, Baiheng Ma, Juanjuan Zheng, Ming Lei, Shaohui Yan, Dan Dan, Tao Duan, Yanlong Yang, and Tong Ye
Appl. Opt. 51(2) 191-196 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).
  2. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [PubMed]
  3. J. C. Aguilar, “Measuring of temperatures of a candle flame using four multidirectional point-diffraction interferometers,” Opt. Eng. 52(10), 104103 (2013).
  4. W. Zhao, L. Qiu, Y. Xiao, and J. Yang, “Laser differential confocal interference multi-parameter comprehensive measurement method and its system for spherical lens,” Opt. Express 24(20), 22813–22829 (2016).
    [PubMed]
  5. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
    [PubMed]
  6. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [PubMed]
  7. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
    [PubMed]
  8. S. Rawat, S. Komatsu, A. Markman, A. Anand, and B. Javidi, “Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification,” Appl. Opt. 56(9), D127–D133 (2017).
    [PubMed]
  9. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
    [PubMed]
  10. H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
    [PubMed]
  11. B. Hao, M. Shan, M. Diao, Z. Zhong, and H. Ma, “Common-path interferometer with a tri-window,” Opt. Lett. 37(15), 3213–3215 (2012).
    [PubMed]
  12. H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
  13. L. Ma, Y. Li, H. Wang, and H. Jin, “Fast algorithm for reliability-guided phase unwrapping in digital holographic microscopy,” Appl. Opt. 51(36), 8800–8807 (2012).
    [PubMed]
  14. H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46(26), 6623–6635 (2007).
    [PubMed]
  15. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35(15), 2612–2614 (2010).
    [PubMed]
  16. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [PubMed]
  17. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008).
    [PubMed]
  18. D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50(19), 3360–3368 (2011).
    [PubMed]
  19. Z. Wang, Y. Chen, and Z. Jiang, “Dual-wavelength digital holographic phase reconstruction based on a polarization-multiplexing configuration,” Chin. Opt. Lett. 14(1), 010008 (2016).
  20. M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
    [PubMed]
  21. J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
    [PubMed]
  22. N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42(1), 73–76 (2017).
    [PubMed]
  23. P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
  24. H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
  25. B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).
  26. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
    [PubMed]
  27. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [PubMed]
  28. J. Weng, J. Zhong, and C. Hu, “Automatic spatial filtering to obtain the virtual image term in digital holographic microscopy,” Appl. Opt. 49(2), 189–195 (2010).
    [PubMed]
  29. X. He, C. V. Nguyen, M. Pratap, Y. Zheng, Y. Wang, D. R. Nisbet, R. J. Williams, M. Rug, A. G. Maier, and W. M. Lee, “Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy,” Biomed. Opt. Express 7(8), 3111–3123 (2016).
    [PubMed]
  30. Z. Wang, J. Jiao, W. Qu, F. Yang, H. Li, A. Tian, and A. Asundi, “Linear programming phase unwrapping for dual-wavelength digital holography,” Appl. Opt. 56(3), 424–433 (2017).
    [PubMed]
  31. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
  32. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [PubMed]

2017 (4)

2016 (4)

2015 (3)

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[PubMed]

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).

B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).

2014 (2)

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
[PubMed]

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).

2013 (2)

J. C. Aguilar, “Measuring of temperatures of a candle flame using four multidirectional point-diffraction interferometers,” Opt. Eng. 52(10), 104103 (2013).

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
[PubMed]

2012 (3)

X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).

L. Ma, Y. Li, H. Wang, and H. Jin, “Fast algorithm for reliability-guided phase unwrapping in digital holographic microscopy,” Appl. Opt. 51(36), 8800–8807 (2012).
[PubMed]

B. Hao, M. Shan, M. Diao, Z. Zhong, and H. Ma, “Common-path interferometer with a tri-window,” Opt. Lett. 37(15), 3213–3215 (2012).
[PubMed]

2011 (1)

2010 (3)

2009 (1)

2008 (3)

2007 (2)

2006 (1)

2003 (1)

2000 (1)

1982 (1)

Abdelsalam, D. G.

Abdul-Rahman, H. S.

Aguilar, J. C.

J. C. Aguilar, “Measuring of temperatures of a candle flame using four multidirectional point-diffraction interferometers,” Opt. Eng. 52(10), 104103 (2013).

Anand, A.

Asundi, A.

Bai, H.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[PubMed]

Burton, D. R.

Charrière, F.

Chen, J.

X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).

Chen, Y.

Clark, R. L.

Colomb, T.

Cuche, E.

Dakoff, A.

Dasari, R. R.

Depeursinge, C.

Di, J.

Diao, M.

B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).

B. Hao, M. Shan, M. Diao, Z. Zhong, and H. Ma, “Common-path interferometer with a tri-window,” Opt. Lett. 37(15), 3213–3215 (2012).
[PubMed]

Emery, Y.

Feld, M. S.

Gao, P.

Gass, J.

Gdeisat, M. A.

Gillette, M. U.

Girshovitz, P.

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
[PubMed]

Guo, L.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[PubMed]

Hao, B.

B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).

B. Hao, M. Shan, M. Diao, Z. Zhong, and H. Ma, “Common-path interferometer with a tri-window,” Opt. Lett. 37(15), 3213–3215 (2012).
[PubMed]

Harder, I.

He, X.

Hu, C.

Ikeda, T.

Ina, H.

Jafarfard, M. R.

Javidi, B.

Jenness, N. J.

Jiang, Z.

Jiao, J.

Jin, H.

Khmaladze, A.

Kim, D.

Kim, D. Y.

Kim, M.

Kim, M. K.

Kobayashi, S.

Komatsu, S.

Kühn, J.

Lalor, M. J.

Lee, W. M.

Li, E.

Li, H.

Li, Y.

Lilley, F.

Liu, L.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).

Liu, S.

X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).

Lo, C. M.

Lu, X.

X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).

Ma, C.

Ma, H.

Ma, L.

Ma, Z.

X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).

Magnusson, R.

Maier, A. G.

Mantel, K.

Markman, A.

Marquet, P.

Millet, L. J.

Montfort, F.

Moon, S.

Moore, C. J.

Nercissian, V.

Nguyen, C. V.

Nisbet, D. R.

Popescu, G.

Pratap, M.

Qiu, L.

Qu, W.

Rawat, S.

Rinehart, M. T.

Rug, M.

Shaked, N. T.

Shan, M.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).

B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[PubMed]

B. Hao, M. Shan, M. Diao, Z. Zhong, and H. Ma, “Common-path interferometer with a tri-window,” Opt. Lett. 37(15), 3213–3215 (2012).
[PubMed]

Takeda, M.

Tayebi, B.

Tian, A.

Turko, N. A.

Wang, H.

Wang, Y.

X. He, C. V. Nguyen, M. Pratap, Y. Zheng, Y. Wang, D. R. Nisbet, R. J. Williams, M. Rug, A. G. Maier, and W. M. Lee, “Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy,” Biomed. Opt. Express 7(8), 3111–3123 (2016).
[PubMed]

B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).

Wang, Z.

Wax, A.

Weng, J.

Williams, R. J.

Xi, T.

Xiao, Y.

Xie, M.

Yang, F.

Yang, J.

Yao, B.

Zhang, J.

Zhang, Y.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).

B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[PubMed]

Zhang, Z.

X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).

Zhao, J.

Zhao, W.

Zheng, Y.

Zhi, Z.

B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).

Zhong, J.

Zhong, L.

X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).

Zhong, Z.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[PubMed]

B. Hao, M. Shan, M. Diao, Z. Zhong, and H. Ma, “Common-path interferometer with a tri-window,” Opt. Lett. 37(15), 3213–3215 (2012).
[PubMed]

Appl. Opt. (9)

S. Rawat, S. Komatsu, A. Markman, A. Anand, and B. Javidi, “Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification,” Appl. Opt. 56(9), D127–D133 (2017).
[PubMed]

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[PubMed]

L. Ma, Y. Li, H. Wang, and H. Jin, “Fast algorithm for reliability-guided phase unwrapping in digital holographic microscopy,” Appl. Opt. 51(36), 8800–8807 (2012).
[PubMed]

H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46(26), 6623–6635 (2007).
[PubMed]

D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50(19), 3360–3368 (2011).
[PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[PubMed]

J. Weng, J. Zhong, and C. Hu, “Automatic spatial filtering to obtain the virtual image term in digital holographic microscopy,” Appl. Opt. 49(2), 189–195 (2010).
[PubMed]

Z. Wang, J. Jiao, W. Qu, F. Yang, H. Li, A. Tian, and A. Asundi, “Linear programming phase unwrapping for dual-wavelength digital holography,” Appl. Opt. 56(3), 424–433 (2017).
[PubMed]

Biomed. Opt. Express (1)

Chin. Opt. Lett. (1)

J. Opt. (1)

B. Hao, M. Shan, Z. Zhi, M. Diao, Y. Wang, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval,” J. Opt. 17, 035602 (2015).

J. Opt. Soc. Am. (1)

Light Sci. Appl. (1)

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).

Opt. Eng. (1)

J. C. Aguilar, “Measuring of temperatures of a candle flame using four multidirectional point-diffraction interferometers,” Opt. Eng. 52(10), 104103 (2013).

Opt. Express (4)

Opt. Lasers Eng. (3)

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).

X. Lu, J. Chen, S. Liu, Z. Ma, Z. Zhang, and L. Zhong, “3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography,” Opt. Lasers Eng. 50(10), 1431–1435 (2012).

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).

Opt. Lett. (10)

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
[PubMed]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
[PubMed]

N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42(1), 73–76 (2017).
[PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[PubMed]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
[PubMed]

N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
[PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[PubMed]

B. Hao, M. Shan, M. Diao, Z. Zhong, and H. Ma, “Common-path interferometer with a tri-window,” Opt. Lett. 37(15), 3213–3215 (2012).
[PubMed]

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35(15), 2612–2614 (2010).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a).Experimental setup: P1 and P2, polarizers; BS1 and BS2, beam-splitters; BE, beam expander; S, sample; L1 and L2, lenses; PBS, polarizing beam splitter; PM, pinhole mirror; RR1 and RR2, retro-reflector mirrors ;(b) and (c) three-dimensional positions of RR1 and RR2.
Fig. 2
Fig. 2 Multiplexed interferograms (a) without and (b) with the specimen; (c) power spectrum of (a); (d) power spectrum of (b).
Fig. 3
Fig. 3 Reconstructed phase maps for (a) λ1, (b) λ2, and (c) λs, with the color bar indicates phase in rad.
Fig. 4
Fig. 4 1D height profiles obtained from phase maps along dash lines marked in Figs. 3.
Fig. 5
Fig. 5 An unwrapped 3D height map of the step target.
Fig. 6
Fig. 6 Experimental results for the circular step target. (a) Multiplexed interferogram; (b) power spectrum; (c) 3D height map.
Fig. 7
Fig. 7 Stability test for the proposed method.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)= a 1 2 + a 2 2 +{ 0.5 b 1 { exp[ i( φ 1 + φ bg1 +2π f x1 x+2π f y1 y) ]+ exp[ i( φ 1 + φ bg1 +2π f x1 x+2π f y1 y) ] }+ 0.5 b 2 { exp[ i( φ 2 + φ bg2 +2π f x2 x+2π f y2 y) ]+ exp[ i( φ 2 + φ bg2 +2π f x2 x+2π f y2 y) ] } },
C 1 (x,y)=IFT{ FT(I)*BP F 1 }=0.5 b 1 { exp[ i( φ 1 + φ bg1 +2π f 1x x+2π f 1y y) ] },
C 2 (x,y)=IFT{ FT(I)*BP F 2 }=0.5 b 2 { exp[ i( φ 2 + φ bg2 +2π f 2x x+2π f 2y y) ] },
C 1 ' (x,y)=IFT{ FT( I ' )*BP F 1 }=0.5 b 1 { exp[ i( φ bg1 +2π f x1 x+2π f y1 y) ] },
C 2 ' (x,y)=IFT{ FT( I ' )*BP F 2 }=0.5 b 2 { exp[ i( φ bg2 +2π f x2 x+2π f y2 y) ] },
φ 1 (x,y)= tan 1 [ C 1 (x,y) C 1 ' (x,y) ],
φ 2 (x,y)= tan 1 [ C 2 (x,y) C 2 ' (x,y) ],
φ s (x,y)={ φ 2 (x,y) φ 1 (x,y); if φ 2 (x,y) φ 1 (x,y)>0 φ 2 (x,y) φ 1 (x,y)+2π; if φ 2 (x,y) φ 1 (x,y)<0 .
φ i (x,y)=h(x,y)×2π× ( n i 1) λ i =h(x,y)×2π× 1 λ ei ,
h(x,y)= φ s (x,y) 2π × λ e1 λ e2 λ e1 λ e2 = φ s (x,y) 2π × λ s .

Metrics