Abstract

The potentialities in using hollow core tube lattice fibers based on inhibited coupling wave-guiding for label-free DNA detection are numerically investigated and discussed here. The proposed sensing approach does not require any additional transducer component such as Bragg gratings, amplifying techniques such as nanoparticles nor coherent sources. It simply consists of the measurement of the transmittance of a piece of fiber some ten centimeters long. In case of matching DNA sequence, an additional bio-layer is laid down the dielectric-air interface causing a red shift of the transmission spectrum of the fiber. Results show a spectral sensitivity on the bio-layer with shift as high as 42 nm for every 10 nm of bio-layer and robustness against imperfect fiber coupling. The proposed approach can be easily applied to sensing of other complex molecular structures where the presence/absence of analyte can generate or not an additional layer.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow transmission loss in inhibited-coupling guiding hollow fibers

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid
Optica 4(2) 209-217 (2017)

Micro-capillary-based evanescent field biosensor for sensitive, label-free DNA detection

Yun Liu, Shimeng Chen, Qiang Liu, and Wei Peng
Opt. Express 23(16) 20686-20695 (2015)

Label-free slot-waveguide biosensor for the detection of DNA hybridization

Tuffail Dar, Jiri Homola, B. M. Azizur Rahman, and Muttukrishnan Rajarajan
Appl. Opt. 51(34) 8195-8202 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
    [Crossref]
  2. Y. Huang, Z. Tian, L. Sun, D. Sun, J. Li, Y. Ran, and B. Guan, “High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle,” Opt. Express 23(21), 26962–26968 (2015).
    [Crossref] [PubMed]
  3. A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
    [Crossref]
  4. A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
    [Crossref]
  5. J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).
  6. E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
    [Crossref]
  7. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
    [Crossref]
  8. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  9. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber, part I: arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref]
  10. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  11. N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).
  12. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  13. A. K. Mudraboyina and J. Sabarinathan, “Protein Binding Detection Using On-Chip Silicon Gratings,” Sensors 11(12), 11295–11304 (2011).
    [Crossref]
  14. L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 18(10), 260459 (2016).
  15. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
    [Crossref]
  16. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(18), 9514–9519 (2013).
    [Crossref] [PubMed]
  17. P. Uebel, M. Günendi, M. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
    [Crossref] [PubMed]

2017 (3)

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

2016 (2)

2015 (2)

Y. Huang, Z. Tian, L. Sun, D. Sun, J. Li, Y. Ran, and B. Guan, “High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle,” Opt. Express 23(21), 26962–26968 (2015).
[Crossref] [PubMed]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

2013 (2)

2012 (1)

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

2011 (1)

A. K. Mudraboyina and J. Sabarinathan, “Protein Binding Detection Using On-Chip Silicon Gratings,” Sensors 11(12), 11295–11304 (2011).
[Crossref]

2010 (2)

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

2008 (1)

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Ahmed, G.

Alharbi, M.

Amsanpally, A.

Bang, O.

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Barozzi, M.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

Baz, A.

Benabid, F.

Bertucci, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

Biriukov, A. S.

Bjarklev, A.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Blondy, J. M.

Bradley, T.

Bradley, T. D.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Candiani, A.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Chafer, M.

Chen, Y.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Childs, P.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Corradini, R.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

Coscelli, E.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Cucinotta, A.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

Debord, B.

Dianov, E. M.

Edavalath, N.

Emiliyanov, G.

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Fokoua, E. N.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

Foroni, M.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

Fourcade-Dutin, C.

Frosz, M.

Gérôme, F.

Giannetti, S.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

Gouveia, M. A.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Guan, B.

Günendi, M.

Hansen, T. P.

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Hayes, J. R

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Hayes, J. R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

Hoiby, P. E.

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Huang, Y.

Hugonnot, E.

Jasion, G.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

Jensen, J. B.

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Kolyadin, A. N.

Konstantaki, M.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

Kosolapov, A. F.

Laegsgaard, J.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

Li, J.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Liu, Z.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

Manicardi, A.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

Marchelli, R.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

Maurel, M.

Ménard, J.

Mudraboyina, A. K.

A. K. Mudraboyina and J. Sabarinathan, “Protein Binding Detection Using On-Chip Silicon Gratings,” Sensors 11(12), 11295–11304 (2011).
[Crossref]

Nielsen, K.

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Passaro, D.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

Pedersen, L. H.

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Petrovich, M. N.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Pissadakis, S.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Poli, F.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

Pryamikov, A. D.

Ran, Y.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Richardson, D. J.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Russell, P.

Sabarinathan, J.

A. K. Mudraboyina and J. Sabarinathan, “Protein Binding Detection Using On-Chip Silicon Gratings,” Sensors 11(12), 11295–11304 (2011).
[Crossref]

Sandoghchi, S. R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

Sandohgchi, S. R.

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Scol, F.

Selleri, S.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

Setti, V.

Slavík, R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

Sozzi, M.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

Spoto, G.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

Sun, D.

Sun, L.

Tian, Z.

Uebel, P.

Vannucci, A.

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

Veneziano, R.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Vincetti, L.

Wang, Y. Y.

Wheeler, N. V.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

Biosens. Bioelectron. (1)

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, a. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1–6 (2010).
[Crossref]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical Fiber Ring Cavity Sensor for Label-Free DNA Detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

IEEE Sensors Journal (1)

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “All-Silica hollow-core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sensors Journal 8(7), 1280–1286 (2008).
[Crossref]

J. Lightw. Technol. (2)

M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, and A. Cucinotta, “Optical Fiber Sensors for Label-free DNA Detection,” J. Lightw. Technol. 35(16), 3461–3472 (2017).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightw. Technol. 35(3), 437–442 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Sensors (1)

A. K. Mudraboyina and J. Sabarinathan, “Protein Binding Detection Using On-Chip Silicon Gratings,” Sensors 11(12), 11295–11304 (2011).
[Crossref]

Other (2)

N. V. Wheeler, T. D. Bradley, J. R Hayes, M. A. Gouveia, Y. Chen, S. R. Sandohgchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low Loss Kagome Fiber in the 1 μm Wavelength Region,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest SoM3F.2 (2016).

J. B. Jensen, G. Emiliyanov, O. Bang, P. E. Hoiby, L. H. Pedersen, T. P. Hansen, K. Nielsen, and A. Bjarklev, “Microstructured Polymer Optical Fiber Biosensors for Detection of DNA and Antibodies,” in Optical Fiber Sensors p. ThA2 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) PNA linked to silica surface with a covalent bond. (b) DNA strand containing the sequence to detect bounded with PNA. (c) DNA strands modeled as a layer with thickness tly and refractive index nly.
Fig. 2
Fig. 2 (a) Tube Lattice Fiber cross-section. (b) core mode (c),(d) cladding modes with quick and slow spatial dependence respectively. (e) hole mode. (f) detail of a fiber’s tubes with bio-layer.
Fig. 3
Fig. 3 FM confinement loss of the analyzed fiber without bio-layer (red line) and with 30 nm of bio-layer (green line).
Fig. 4
Fig. 4 Schematic of the optical set-up. A broadband coherent or incoherent source is coupled at one end of the fiber. The transmitted light is collected from the other end and its spectrum is analyzed. The presence or absence of a spectral shift correspond to presence or absence of the DNA sequence searched for respectively.
Fig. 5
Fig. 5 Left: Transmission spectrum of the analyzed fiber without bio-layer and with different bio-layer thickness (10nm, 20nm, 30nm). Only FM propagation is assumed. Right: Spectral shift vs bio-layer thickness for different values of nly
Fig. 6
Fig. 6 Transmission spectrum of the analyzed fiber with and without 10nm bio-layer for different excitation conditions obtained by changing both spot size (different line style) and alignment (different color) of a input gaussian beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 t si m n si 2 1 ,
S λ , t ly = d λ t ly = 4 m n si 2 1 ,

Metrics