Abstract

Nanoparticles trapped on resonant near-field apertures/engravings carved in plasmonic films experience optical forces due to the steep intensity gradient field of the aperture/engraving as well as the image like interaction with the substrate. For non-resonant nanoparticles the contribution of the substrate interaction to the trapping force in the vicinity of the trap (aperture/engraving) mode is negligible. But, in the case of plasmonic nanoparticles, the contribution of the substrate interaction to the low frequency stable trapping mode of the coupled particle-trap system increases as their resonance is tuned to the trap resonance. The strength of the substrate interaction depends on the height of the nanoparticle above the substrate. As a result, a difference in back action mechanism arises for nanoparticle displacements perpendicular to the substrate and along it. For nanoparticle displacements perpendicular to the substrate, the self induced back action component of the trap force arises due to changing interaction with the substrate as well as the trap. On the other hand, for displacements along the substrate, it arises solely due to the changing interaction with the trap. This additional contribution of the substrate leads to more pronounced back action. Numerical simulation results are presented to illustrate these effects using a bowtie engraving as the near-field trap and a nanorod as the trapped plasmonic nanoparticle. The substrate’s role may be important in manipulation of plasmonic nanoparticles between successive traps of on-chip optical conveyor belts, because they have to traverse over regions of bare substrate while being handed off between these traps.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

Optical vortex trap for resonant confinement of metal nanoparticles

Maria Dienerowitz, Michael Mazilu, Peter J. Reece, Thomas F. Krauss, and Kishan Dholakia
Opt. Express 16(7) 4991-4999 (2008)

Plasmon resonance-based optical trapping of single and multiple Au nanoparticles

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer
Opt. Express 15(19) 12017-12029 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
    [Crossref]
  2. A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
    [Crossref] [PubMed]
  3. M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
    [Crossref]
  4. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  5. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
    [Crossref]
  6. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [Crossref] [PubMed]
  7. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
    [Crossref]
  8. R. Quidant, “Plasmonic tweezers - The strength of surface plasmons,” Mater. Res. Bull. 37(8), 739–744 (2012).
    [Crossref]
  9. T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
    [Crossref] [PubMed]
  10. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [Crossref]
  11. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  12. A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
    [Crossref] [PubMed]
  13. P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
    [Crossref] [PubMed]
  14. Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
    [Crossref] [PubMed]
  15. G. Sotiriou, “Biomedical applications of multifunctional plasmonic nanoparticles,” WIREs Nanomed. Nanobiotechnol. 5(1), 19–30 (2013).
    [Crossref]
  16. D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
    [Crossref]
  17. F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
    [Crossref] [PubMed]
  18. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983).
    [Crossref] [PubMed]
  19. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
    [Crossref]
  20. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [Crossref] [PubMed]
  21. P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
    [Crossref]
  22. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
    [Crossref]
  23. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  24. J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
    [Crossref]
  25. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
    [Crossref]
  26. L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
    [Crossref]
  27. P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
    [Crossref]
  28. R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
    [Crossref] [PubMed]
  29. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.
  30. J. R. Arias-Gonźalez and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20(7), 1201–1209 (2003).
    [Crossref]
  31. M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
    [Crossref]
  32. P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).
  33. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
    [Crossref]
  34. D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
    [Crossref]
  35. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
    [Crossref] [PubMed]
  36. W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2016), Chap. 2.
  37. Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
    [Crossref]
  38. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 1998), Chap. 5.
    [Crossref]
  39. A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
    [Crossref]
  40. Comsol Multiphysics ®
  41. D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), Chap. 8.
  42. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref] [PubMed]
  43. W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and Applications (Springer, 2009), Chap. 2.
  44. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  45. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  46. P. Bergese and K. Hamad-Schifferli, Nanomaterial Interfaces in Biology (Springer, 2013), Chap. 3.
    [Crossref]

2016 (2)

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]

2015 (2)

L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]

2014 (3)

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref] [PubMed]

Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref] [PubMed]

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).

2013 (3)

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]

G. Sotiriou, “Biomedical applications of multifunctional plasmonic nanoparticles,” WIREs Nanomed. Nanobiotechnol. 5(1), 19–30 (2013).
[Crossref]

T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref] [PubMed]

2012 (3)

R. Quidant, “Plasmonic tweezers - The strength of surface plasmons,” Mater. Res. Bull. 37(8), 739–744 (2012).
[Crossref]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

2011 (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

2010 (5)

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
[Crossref]

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

2009 (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

2008 (3)

R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

2007 (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

2006 (3)

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
[Crossref]

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref] [PubMed]

A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

2003 (3)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

J. R. Arias-Gonźalez and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20(7), 1201–1209 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]

1999 (1)

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
[Crossref]

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
[Crossref]

1985 (1)

1983 (1)

Aberasturi, D. J.

D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]

Acimovic, S. S.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

Alexander, R. W.

Arias-Gonzalez, J. R.

Barth, M.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
[Crossref]

Bell, R. J.

Bendix, P. M.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).

Benson, O.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
[Crossref]

Bergese, P.

P. Bergese and K. Hamad-Schifferli, Nanomaterial Interfaces in Biology (Springer, 2013), Chap. 3.
[Crossref]

Berthelot, J.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

Bogdanov, A. A.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 1998), Chap. 5.
[Crossref]

Bowen, W. P.

W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2016), Chap. 2.

Cai, W.

W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and Applications (Springer, 2009), Chap. 2.

Cao, J. X.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Capasso, F.

Caro, J.

T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref] [PubMed]

Chang, D.E.

L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Chaumet, P. C.

Cheng, Y. T.

Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref] [PubMed]

Chow, E. K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]

Crozier, K.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]

Descharmes, N.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]

Dharanipathy, U. P.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]

Dholakia, K.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]

Diao, Z.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]

Dionne, J. A.

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

Dogariu, A.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Erickson, D.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Garciá de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref] [PubMed]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Gordon, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Griffiths, D. J.

D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), Chap. 8.

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hamad-Schifferli, K.

P. Bergese and K. Hamad-Schifferli, Nanomaterial Interfaces in Biology (Springer, 2013), Chap. 3.
[Crossref]

Hansen, P.

Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref] [PubMed]

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.

Hesselink, L.

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref] [PubMed]

Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref] [PubMed]

Hilger, A.

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Houndré, R.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]

Hu, J.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 1998), Chap. 5.
[Crossref]

Ibanescu, M.

Jauffred, L.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).

Joannopoulos, J. D.

Johnson, S. G.

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Käll, M.

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref] [PubMed]

Kawata, S.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]

Kimerling, L. C.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Krauss, T. F.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]

Kreibig, U.

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Leest, T.

T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, L.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Li, T.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Li, Z.

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref] [PubMed]

Lin, S.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Liu, H.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Liz-Marzán, L. M.

D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Loncar, M.

Long, L. L.

Lu, T. J.

Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref] [PubMed]

Mandal, S.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Maulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Mazilu, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]

Meier, M.

Mestres, P.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

Milburn, G. J.

W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2016), Chap. 2.

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Neumeier, L.

L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Nieto-Vesperinas, M.

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Norregaard, K.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Oddershede, L. B.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
[Crossref]

Ordal, M. A.

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Pang, Y.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Pastorizia-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Petrov, M. I.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]

Pinchuk, A.

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Plessen, G.

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Ploschner, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]

Povinelli, M. L.

Prodan, E.

P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Querry, M. R.

Quidant, R.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

R. Quidant, “Plasmonic tweezers - The strength of surface plasmons,” Mater. Res. Bull. 37(8), 739–744 (2012).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rahmani, A.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Roels, J.

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Ryan, J.

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref] [PubMed]

Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref] [PubMed]

Sainidou, R.

R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref] [PubMed]

Saleh, A. A. E.

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]

Serey, X.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]

Serrano-Montes, A. B.

D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]

Shalaev, V.

W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and Applications (Springer, 2009), Chap. 2.

Shalin, A. S.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]

Smythe, E. J.

Sotiriou, G.

G. Sotiriou, “Biomedical applications of multifunctional plasmonic nanoparticles,” WIREs Nanomed. Nanobiotechnol. 5(1), 19–30 (2013).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Sukhov, S. V.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]

Svedberg, F.

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref] [PubMed]

Thourhout, D. V.

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
[Crossref]

Tonin, M.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Wang, S. M.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Wang, Y.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Wokaun, A.

Xu, H.

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zhang, X.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]

Zheng, Y.

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref] [PubMed]

Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref] [PubMed]

Zheng, Y. J.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Zhu, C.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Zhu, S. N.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Adv. Optical Mater. (1)

D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]

Appl Phys Lett. (1)

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron (1)

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).

J. Nanophoton. (1)

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]

Lab Chip (1)

T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]

Light Sci. Appl. (1)

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]

Mater. Res. Bull. (1)

R. Quidant, “Plasmonic tweezers - The strength of surface plasmons,” Mater. Res. Bull. 37(8), 739–744 (2012).
[Crossref]

Nano Lett. (9)

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref] [PubMed]

Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Nanotechnology (1)

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Nat. Photon. (3)

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]

Nat. Phys. (2)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

New J. Phys. (1)

L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]

Phys. Rev. Lett. (3)

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]

R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref] [PubMed]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
[Crossref]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

WIREs Nanomed. Nanobiotechnol. (1)

G. Sotiriou, “Biomedical applications of multifunctional plasmonic nanoparticles,” WIREs Nanomed. Nanobiotechnol. 5(1), 19–30 (2013).
[Crossref]

Other (7)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.

W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2016), Chap. 2.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 1998), Chap. 5.
[Crossref]

Comsol Multiphysics ®

D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), Chap. 8.

W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and Applications (Springer, 2009), Chap. 2.

P. Bergese and K. Hamad-Schifferli, Nanomaterial Interfaces in Biology (Springer, 2013), Chap. 3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the simulated structure. (a) Trapped nanorod on a bowtie engraving in a plasmonic substrate. (b) xy cross section of the bowtie engraving. (c) xz cross section of the trapped nanorod on the bowtie engraving.
Fig. 2
Fig. 2 Evidence of substrate mediated back action. (a), (b), and (c) are for nanorod with L = 220 nm, h = 40 nm, and s = 20 nm. (d), (e) and (f) are for nanorod with L = 350 nm, h = 20 nm, and s = 140 nm. (a) and (d) Absorption cross section of the isolated rod (red solid), rod on substrate (red dashed) and engraving mode (black solid). (b) and (e) Absorption cross section of the coupled modes. (c) and (f) Net force acting on the nanorod. F z N (solid) acts in the z direction and F x N (dashed) acts in the x direction.
Fig. 3
Fig. 3 Interaction picture for the trapping of the nanorod on the bowtie engraving. The coupled particle-trap system arises due to the superposition of the engraving and the rod on substrate mode. The image like interaction with the substrate makes the nanoparticle polarizability a function of its height from the substrate.
Fig. 4
Fig. 4 Effect of detuning between isolated rod mode and the engraving mode on the nature of the near-field force on the nanorod. The ω0 + δ of the different nanorods are 1.94 × 1015 Hz (pink), 1.55 × 1015 Hz (blue), 1.44 × 1015 Hz (purple), 1.26 × 1015 Hz (olive), and 1.09 × 1015 Hz (red) (a) Absorption cross section of uncoupled isolated rod modes (solid curves), rod on substrate modes (dashed) and engraving mode (solid black). (b) Absorption cross section of coupled modes and the engraving mode. (c) F Z N on the nanorod. The plots have been biased by −60 pN (pink), −45 pN (blue), −30 pN (purple), −15 pN (olive) to ensure legibility.
Fig. 5
Fig. 5 Self Induced Back Action Trapping of a dielectric nanorod on the bowtie engraving. The dielectric constant and the conductivity of the dielectric are taken as 100 and 10−2 S/m respectively. The presence of the nanorod shifts the bare engraving mode (solid black) to the low frequency coupled mode of the particle-trap system (blue solid). The isolated rod (solid red) and rod on substrate (dashed green) mode have negligible difference in overlap with the bare engraving mode. The higher energy stored in the coupled particle-trap system at the operating frequency (solid red vertical) compared to the bare engraving contributes to the back action component of the near-field trap force (dashed blue) on the nanorod.
Fig. 6
Fig. 6 Variation of the near-field force on the nanorod with displacement along the substrate. (a), (b), and (c) are for nanorod with ω0 + δ = 1.94 × 1015 Hz. (d), (e) and (f) are for nanorod with ω0 + δ = 1.09 × 1016 Hz. Solid blue curve is for s = 0, dotted blue curve is for s = 100 nm, and dashed blue curve is for s = 200 nm. (a) and (d) Absorption cross section of rod on substrate mode (red solid), engraving mode (black solid) and the coupled modes for different s values. (b) and (e) F z S (red solid) and F z N for different s values. (c) and F x N on the nanorod for different s values.
Fig. 7
Fig. 7 Variation of near-field force on the nanorod with height above the substrate. (a) Absorption cross section of the uncoupled isolated rod mode (solid black), engraving (dashed black), rod on substrate mode for h = 60 nm (solid blue), h = 40 nm (solid olive), and h = 20 nm (solid red). (b), (c), and (d) represent the absorption cross section of the coupled modes and F z N acting on the nanorod for h = 60 nm, h = 40 nm, and h = 20 nm respectively.
Fig. 8
Fig. 8 Impact of substrate on the back action effect. (a), (b), and (c) are for nanorod with ω0 + δ = 1.44 × 1015 Hz. (d), (e) and (f) are for nanorod with ω0 + δ = 1.94 × 1016 Hz. Solid black is for isolated nanorod, dashed black is for bare engraving, blue curve is for h = 60 nm, olive curve is for h = 40 nm, red curve is for h = 20 nm. (a) and (d) Absorption cross section spectrum of rod on substrate mode at different h. (b) and (e) Absorption cross section spectrum of the coupled particle-trap system at different h. (c) and (f) Spectrum of F z N acting on the nanorod at different h.

Tables (1)

Tables Icon

Table 1 Infinity frequency limit, plasma frequency and damping frequency of dielectric constant

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω ± c ( r ) = ω 0 + δ 2 i ( κ + γ ) 2 ± g 2 ( r ) + [ δ i ( γ κ ) ] 2 4
I ( r , ω ) = I 0 η 2 ( r ) ( ω ω ( r ) ) 2 + η 2 ( r ) I 0 κ 2 ( Δ δ ω 0 ( r ) ) 2 + κ 2 = I 0 κ 2 Δ 2 ( 1 δ ω 0 ( r ) Δ ) 2 + κ 2 I 0 κ 2 Δ 2 + κ 2 2 δ ω 0 ( r ) Δ = I 0 κ 2 Δ 2 + κ 2 ( 1 2 δ ω 0 ( r ) Δ Δ 2 + κ 2 ) 1 I 0 κ 2 Δ 2 + κ 2 + I 0 κ 2 Δ 2 + κ 2 2 δ ω 0 ( r ) Δ Δ 2 + κ 2
F N = R e ( α ( ω ) ) 4 I ( r , ω )
F j S / T =   V ( T S / T ) j d v
F j N = F j S + F j T + F j I F j I = F j S T + F j T S F j S T / T S =   V ( T S T / T S ) j d v
ε ( ω ) = ε ω p 2 ω 2 + i Γ ω

Metrics