Abstract

A high repetition rate Q-switched modelocked ~2.1 µm monolithic waveguide laser is reported. Ultrafast laser inscription is used to fabricate 3D depressed cladding channel waveguides in holmium doped yttrium aluminium garnet. This results in a transversely single mode waveguide laser. With the use of a graphene based saturable output coupler, Q-switched modelocking was achieved with a pulse repetition frequency of 5.9 GHz and up to 170 mW of average output power. This first demonstration of multi-GHz repetition rate operation from a Ho3+:YAG laser provides a compact and convenient source for a number of applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers

Alexander Klenner and Ursula Keller
Opt. Express 23(7) 8532-8544 (2015)

Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser

Mario Mangold, Christian A. Zaugg, Sandro M. Link, Matthias Golling, Bauke W. Tilma, and Ursula Keller
Opt. Express 22(5) 6099-6107 (2014)

Sub-300-femtosecond operation from a MIXSEL

Mario Mangold, Matthias Golling, Emilio Gini, Bauke W. Tilma, and Ursula Keller
Opt. Express 23(17) 22043-22059 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. P. Patel and B. E. Knudsen, “Optimizing use of the Holmium:YAG Laser for Surgical Management of Urinary Lithiasis,” Curr. Urol. Rep. 15(4), 397 (2014).
    [PubMed]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
  3. U. N. Singh, B. M. Walsh, J. Yu, M. Petros, M. J. Kavaya, T. F. Refaat, and N. P. Barnes, “Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing,” Opt. Mater. Express 5(4), 827–837 (2015).
  4. I. K. Ilev and R. W. Waynant, “Mid-infrared Biomedical Applications,” in Mid-infrared Semiconductor Optoelectronics,” A. Krier, ed. (Springer, 2006).
  5. E. Jéquier and F. Constant, “Water as an essential nutrient: the physiological basis of hydration,” Eur. J. Clin. Nutr. 64(2), 115–123 (2010).
    [PubMed]
  6. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [PubMed]
  7. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).
  8. G. T. Nogueira, B. Xu, Y. Coello, M. Dantus, and F. C. Cruz, “Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS,” Opt. Express 16(14), 10033–10038 (2008).
    [PubMed]
  9. E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 19(7), 6296–6302 (2011).
    [PubMed]
  10. Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm-Ho-Codoped Fiber Laser at 2.06 µm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).
  11. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus – a new saturbale absorber material for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
  12. C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
    [PubMed]
  13. C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, “Tin diselenide as a new saturable absorber for generation of laser pulses at 1μm,” Opt. Express 25(6), 6132–6140 (2017).
    [PubMed]
  14. M. Ebrahimzadeh, “Mid-Infrared Ultrafast and Continuous-Wave Optical Parametric Oscillators,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, ed. (Springer, 2003).
  15. P. Budni, L. Pomeranz, M. Lemons, C. Miller, J. Mosto, and E. Chicklis, “Efficient mid-infrared laser using 1.9-µm-pumped Ho: YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
  16. M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
    [PubMed]
  17. B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).
  18. J. W. Kim, J. I. Mackenzie, W. O. S. Bailey, L. Pearson, D. Y. Shen, Y. Yang and W. A. Clarkson, “Cryogenically-cooled Ho:YAG laser in-band pumped by a Tm fibre laser, “ in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CA10_5.
  19. X. Duan, J. Yuan, Z. Cui, B. Yao, T. Dai, J. Li, and Y. Pan, “Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm,” Appl. Opt. 55(8), 1953–1956 (2016).
    [PubMed]
  20. B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
  21. Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
    [PubMed]
  22. J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Generation of 220 fs, 20 W pulses at 2 µm from Kerr-lens mode-locked Ho:YAG thin-disk oscillator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper SM1I.6.
  23. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
  24. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
  25. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).
  26. J. I. Mackenzie, “Dielectric Solid-state Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
  27. H. Baker, J. Lee, and D. Hall, “Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers,” Opt. Express 10(6), 297–302 (2002).
    [PubMed]
  28. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems and applications,” Progress in Quant. Elec. 45–46, 3–160 (2016).
  29. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
  30. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
    [PubMed]
  31. D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).
  32. C. Khurmi, N. B. Hébert, W. Q. Zhang, S. Afshar V, G. Chen, J. Genest, T. M. Monro, and D. G. Lancaster, “Ultrafast pulse generation in a mode-locked Erbium chip waveguide laser,” Opt. Express 24(24), 27177–27183 (2016).
    [PubMed]
  33. Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).
  34. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
    [PubMed]
  35. A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
  36. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).
  37. A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
    [PubMed]
  38. X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).
  39. S. Husain and R. G. Bedford, “Graphene saturable absorber for high power semiconductor disk laser mode-locking,” Appl. Phys. Lett. 104, 161107 (2014).
  40. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
  41. S. McDaniel, F. Thorburn, A. Lancaster, R. Stites, G. Cook, and A. Kar, “Operation of Ho:YAG ultrafast laser inscribed waveguide lasers,” Appl. Opt. 56(12), 3251–3256 (2017).
    [PubMed]
  42. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

2017 (2)

2016 (9)

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems and applications,” Progress in Quant. Elec. 45–46, 3–160 (2016).

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).

X. Duan, J. Yuan, Z. Cui, B. Yao, T. Dai, J. Li, and Y. Pan, “Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm,” Appl. Opt. 55(8), 1953–1956 (2016).
[PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[PubMed]

M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[PubMed]

C. Khurmi, N. B. Hébert, W. Q. Zhang, S. Afshar V, G. Chen, J. Genest, T. M. Monro, and D. G. Lancaster, “Ultrafast pulse generation in a mode-locked Erbium chip waveguide laser,” Opt. Express 24(24), 27177–27183 (2016).
[PubMed]

2015 (6)

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[PubMed]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus – a new saturbale absorber material for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

U. N. Singh, B. M. Walsh, J. Yu, M. Petros, M. J. Kavaya, T. F. Refaat, and N. P. Barnes, “Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing,” Opt. Mater. Express 5(4), 827–837 (2015).

2014 (4)

A. P. Patel and B. E. Knudsen, “Optimizing use of the Holmium:YAG Laser for Surgical Management of Urinary Lithiasis,” Curr. Urol. Rep. 15(4), 397 (2014).
[PubMed]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

S. Husain and R. G. Bedford, “Graphene saturable absorber for high power semiconductor disk laser mode-locking,” Appl. Phys. Lett. 104, 161107 (2014).

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).

2013 (1)

2012 (3)

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
[PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).

2011 (2)

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm-Ho-Codoped Fiber Laser at 2.06 µm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).

E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 19(7), 6296–6302 (2011).
[PubMed]

2010 (1)

E. Jéquier and F. Constant, “Water as an essential nutrient: the physiological basis of hydration,” Eur. J. Clin. Nutr. 64(2), 115–123 (2010).
[PubMed]

2008 (2)

2007 (1)

J. I. Mackenzie, “Dielectric Solid-state Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).

2005 (1)

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

2004 (1)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[PubMed]

2002 (1)

2000 (1)

1999 (1)

1997 (1)

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Abramski, K. M.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus – a new saturbale absorber material for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).

Afshar V, S.

Bai, S.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

Baker, H.

Barnes, N. P.

Bedford, R. G.

S. Husain and R. G. Bedford, “Graphene saturable absorber for high power semiconductor disk laser mode-locking,” Appl. Phys. Lett. 104, 161107 (2014).

Beecher, S. J.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[PubMed]

Bennion, I.

Brown, C. T. A.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

Brown, G.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[PubMed]

Budni, P.

Chen, F.

C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, “Tin diselenide as a new saturable absorber for generation of laser pulses at 1μm,” Opt. Express 25(6), 6132–6140 (2017).
[PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[PubMed]

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).

Chen, G.

Chen, Y.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

Cheng, C.

Chicklis, E.

Choudhary, A.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

Coello, Y.

Constant, F.

E. Jéquier and F. Constant, “Water as an essential nutrient: the physiological basis of hydration,” Eur. J. Clin. Nutr. 64(2), 115–123 (2010).
[PubMed]

Cook, G.

Cruz, F. C.

Cui, Z.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

X. Duan, J. Yuan, Z. Cui, B. Yao, T. Dai, J. Li, and Y. Pan, “Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm,” Appl. Opt. 55(8), 1953–1956 (2016).
[PubMed]

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

D’Urso, B.

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).

Dai, T.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

X. Duan, J. Yuan, Z. Cui, B. Yao, T. Dai, J. Li, and Y. Pan, “Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm,” Appl. Opt. 55(8), 1953–1956 (2016).
[PubMed]

Dai, T. Y.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

Dantus, M.

Demetriou, G.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Dhingra, S.

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).

Dong, N.

Du, Y. Q.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

Duan, X.

X. Duan, J. Yuan, Z. Cui, B. Yao, T. Dai, J. Li, and Y. Pan, “Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm,” Appl. Opt. 55(8), 1953–1956 (2016).
[PubMed]

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

Duan, X. M.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

Eason, R. W.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

Feng, X.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

Ferrari, A. C.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).

Fuerbach, A.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).

Ganija, M.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).

Genest, J.

Geng, J.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm-Ho-Codoped Fiber Laser at 2.06 µm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).

Griebner, U.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems and applications,” Progress in Quant. Elec. 45–46, 3–160 (2016).

Gross, S.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).

Guina, M.

Guo, Z.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).

Hall, D.

Härkönen, A.

Hasan, T.

Haub, J.

He, R.

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).

Hébert, N. B.

Hemming, A.

Hönninger, C.

Hsu, K.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

Hu, C.

Husain, S.

S. Husain and R. G. Bedford, “Graphene saturable absorber for high power semiconductor disk laser mode-locking,” Appl. Phys. Lett. 104, 161107 (2014).

Inoue, Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

Jablonski, M.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

Jéquier, E.

E. Jéquier and F. Constant, “Water as an essential nutrient: the physiological basis of hydration,” Eur. J. Clin. Nutr. 64(2), 115–123 (2010).
[PubMed]

Jiang, S.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm-Ho-Codoped Fiber Laser at 2.06 µm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).

Jiang, X.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).

Jiang, Z.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm-Ho-Codoped Fiber Laser at 2.06 µm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).

Jung, I. D.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Kannan, P.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).

Kar, A.

Kar, A. K.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[PubMed]

Kärtner, F. X.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Kavaya, M. J.

Keller, U.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[PubMed]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Khurmi, C.

Knudsen, B. E.

A. P. Patel and B. E. Knudsen, “Optimizing use of the Holmium:YAG Laser for Surgical Management of Urinary Lithiasis,” Curr. Urol. Rep. 15(4), 397 (2014).
[PubMed]

Kotake, T.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

Lagatsky, A. A.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

Lan, R.

Lancaster, A.

Lancaster, D. G.

Lee, J.

Lemons, M.

Li, C.

Li, H.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

Li, J.

Li, X.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

Li, Z.

Lidorikis, E.

Liu, H.

Liu, W.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

Luo, T.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm-Ho-Codoped Fiber Laser at 2.06 µm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).

Macdonald, J.

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus – a new saturbale absorber material for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).

Mackenzie, J. I.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

J. I. Mackenzie, “Dielectric Solid-state Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).

Mary, R.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[PubMed]

Mateos, X.

Matuschek, N.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).

McDaniel, S.

Mezentsev, V.

Milana, S.

Miller, C.

Monro, T. M.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Moser, M.

Mosto, J.

Munch, J.

Nogueira, G. T.

Obraztsov, P. A.

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[PubMed]

Ohara, S.

Okhrimchuk, A.

Okhrimchuk, A. G.

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[PubMed]

Paletko, P.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus – a new saturbale absorber material for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).

Pan, Y.

Paschotta, R.

Patel, A. P.

A. P. Patel and B. E. Knudsen, “Optimizing use of the Holmium:YAG Laser for Surgical Management of Urinary Lithiasis,” Curr. Urol. Rep. 15(4), 397 (2014).
[PubMed]

Petros, M.

Petrov, V.

Pomeranz, L.

Popa, D.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[PubMed]

Refaat, T. F.

Ren, Y.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Schaffers, K. I.

Scheuer, V.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Set, S. Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

Shen, Y.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

Shepherd, D. P.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).

Shestakov, A.

Shi, Z.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Sibbet, W.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

Simakov, N.

Singh, U. N.

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus – a new saturbale absorber material for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).

Sorokin, E.

Sorokina, I. T.

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus – a new saturbale absorber material for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).

Stites, R.

Sun, Z.

Suomalainen, S.

Sutter, D. H.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Tan, Y.

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[PubMed]

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).

Tanaka, D.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

Thorburn, F.

Tilsch, M.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Tolstik, N.

Torrisi, F.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[PubMed]

Tschudi, T.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

Vázquez de Aldana, J. R.

Veitch, P.

Walsh, B. M.

Wang, J.

C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, “Tin diselenide as a new saturable absorber for generation of laser pulses at 1μm,” Opt. Express 25(6), 6132–6140 (2017).
[PubMed]

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

Wang, Q.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm-Ho-Codoped Fiber Laser at 2.06 µm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).

Wang, Y.

Withford, M. J.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).

Xu, B.

Yaguchi, H.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

Yamashita, S.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

Yang, H.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

Yao, B.

Yao, B. Q.

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

Yu, J.

Yuan, J.

Yuan, J. H.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

Zhang, H.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).

Zhang, W. Q.

Ann. Phys. (1)

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).

Appl. Opt. (2)

Appl. Phys. B (2)

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).

Appl. Phys. Lett. (4)

S. Husain and R. G. Bedford, “Graphene saturable absorber for high power semiconductor disk laser mode-locking,” Appl. Phys. Lett. 104, 161107 (2014).

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus – a new saturbale absorber material for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).

Chin. Phys. Lett. (1)

B. Q. Yao, H. Li, X. Li, Y. Chen, X. Duan, S. Bai, H. Yang, Z. Cui, Y. Shen, and T. Dai, “An Actively Mode-Locked Ho:YAG Solid- Laser Pumped by a Tm-Doped Fiber Laser,” Chin. Phys. Lett. 33(4), 044205 (2016).

Curr. Urol. Rep. (1)

A. P. Patel and B. E. Knudsen, “Optimizing use of the Holmium:YAG Laser for Surgical Management of Urinary Lithiasis,” Curr. Urol. Rep. 15(4), 397 (2014).
[PubMed]

Eur. J. Clin. Nutr. (1)

E. Jéquier and F. Constant, “Water as an essential nutrient: the physiological basis of hydration,” Eur. J. Clin. Nutr. 64(2), 115–123 (2010).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (3)

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbet, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100109 (2016).

J. I. Mackenzie, “Dielectric Solid-state Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-µm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

IEEE Photonics Technol. Lett. (3)

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-Locked Tm-Ho-Codoped Fiber Laser at 2.06 µm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011).

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-Switched Mode-Locked and Q-Switched Ion-Exchanged Waveguide Lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry-Pérot Laser Mode-Locked Using Carbon Nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

Laser Phys. Lett. (1)

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm:YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[PubMed]

Opt. Express (10)

G. T. Nogueira, B. Xu, Y. Coello, M. Dantus, and F. C. Cruz, “Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS,” Opt. Express 16(14), 10033–10038 (2008).
[PubMed]

E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 19(7), 6296–6302 (2011).
[PubMed]

M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[PubMed]

C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, “Tin diselenide as a new saturable absorber for generation of laser pulses at 1μm,” Opt. Express 25(6), 6132–6140 (2017).
[PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[PubMed]

H. Baker, J. Lee, and D. Hall, “Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers,” Opt. Express 10(6), 297–302 (2002).
[PubMed]

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
[PubMed]

C. Khurmi, N. B. Hébert, W. Q. Zhang, S. Afshar V, G. Chen, J. Genest, T. M. Monro, and D. G. Lancaster, “Ultrafast pulse generation in a mode-locked Erbium chip waveguide laser,” Opt. Express 24(24), 27177–27183 (2016).
[PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[PubMed]

Opt. Mater. Express (1)

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).

Progress in Quant. Elec. (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems and applications,” Progress in Quant. Elec. 45–46, 3–160 (2016).

Sci. Rep. (1)

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[PubMed]

Other (4)

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Generation of 220 fs, 20 W pulses at 2 µm from Kerr-lens mode-locked Ho:YAG thin-disk oscillator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper SM1I.6.

I. K. Ilev and R. W. Waynant, “Mid-infrared Biomedical Applications,” in Mid-infrared Semiconductor Optoelectronics,” A. Krier, ed. (Springer, 2006).

M. Ebrahimzadeh, “Mid-Infrared Ultrafast and Continuous-Wave Optical Parametric Oscillators,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, ed. (Springer, 2003).

J. W. Kim, J. I. Mackenzie, W. O. S. Bailey, L. Pearson, D. Y. Shen, Y. Yang and W. A. Clarkson, “Cryogenically-cooled Ho:YAG laser in-band pumped by a Tm fibre laser, “ in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CA10_5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Nonlinear transmission versus pulse fluence at 2.1 µm for GSOC.

Fig. 2
Fig. 2

End facet of depressed cladding waveguide structure inscribed in Ho3+:YAG subsrate.

Fig. 3
Fig. 3

Schematic of Q-switched Modelocked Ho3+:YAG waveguide laser setup.

Fig. 4
Fig. 4

(a) QML Ho3+:YAG waveguide laser spectral output, (b) output power versus incident pump power, (c) RF Spectrum; the graph has a span of 150 MHz and was taken with a resolution bandwidth of 1 kHz, (d) q-switched pulse train, (e) modelocked pulse train.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f rep =  c 2nl  
E P,c = ( E sat,L E sat,A ΔR ) 1/2