Abstract

A flexible chalcogenide fiber bundle (FB) with a resolution as high as ~31 lp/mm has been fabricated for delivering thermal images of objects at room temperature. The FB is composed of ~200,000 single fibers with a Ge-As-Te-Se glass core 15 μm in diameter and a polyetherimide (PEI) cladding 16.8 μm in diameter. These Ge-As-Te-Se/PEI fibers show good transparency in the 3-12 μm spectral region. The fabricated FB presents a filling factor of ~72% and a crosstalk of ~1%. High-quality thermal images of a human hand were obtained through the FB, demonstrating good potential of the FB for longwave infrared imaging in the areas such as medicine, industry and defense.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution chalcogenide fiber bundles for infrared imaging

Bin Zhang, Chengcheng Zhai, Sisheng Qi, Wei Guo, Zhiyong Yang, Anping Yang, Xin Gai, Yi Yu, Rongping Wang, Dingyuan Tang, Guangming Tao, and Barry Luther-Davies
Opt. Lett. 40(19) 4384-4387 (2015)

Flexible hollow optical fiber bundle for infrared thermal imaging

Yuji Matsuura and Keisuke Naito
Biomed. Opt. Express 2(1) 65-70 (2011)

Multi-element hollow-core anti-resonant fiber for infrared thermal imaging

Takuya Kobayashi, Takashi Katagiri, and Yuji Matsuura
Opt. Express 24(23) 26565-26574 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
    [PubMed]
  2. B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
  3. I. Gannot, “Thermal imaging bundle-A potential tool to enhance minimally invasive medical procedures,” IEEE. Circ. Dev. Mag. 21(6), 28–33 (2005).
  4. Y. Matsuura and K. Naito, “Flexible hollow optical fiber bundle for infrared thermal imaging,” Biomed. Opt. Express 2(1), 65–70 (2010).
    [PubMed]
  5. I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver-halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).
  6. E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).
  7. Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).
  8. U. Gal, J. Harrington, M. Ben-David, C. Bledt, N. Syzonenko, and I. Gannot, “Coherent hollow-core waveguide bundles for thermal imaging,” Appl. Opt. 49(25), 4700–4709 (2010).
    [PubMed]
  9. C. Huang, S. Kino, T. Katagiri, and Y. Matsuura, “Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle,” Appl. Opt. 51(29), 6913–6916 (2012).
    [PubMed]
  10. T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24(23), 26565–26574 (2016).
    [PubMed]
  11. P. Klocek, M. Roth, and R. D. Rock, “Chalcogenide glass optical fibers and image bundles - properties and applications,” Opt. Eng. 26(2), 88–95 (1987).
  12. A. R. Hilton, A. R. Hilton, J. McCord, W. S. Thompson, and R. A. Leblanc, “Infrared imaging with fiber optic bundles,” Proc. SPIE 5074, 849–854 (2003).
  13. S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).
  14. E. Rave, L. Nagli, and A. Katzir, “Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers,” Opt. Lett. 25(17), 1237–1239 (2000).
    [PubMed]
  15. V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
  16. B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
    [PubMed]
  17. Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360–3362 (2010).
    [PubMed]
  18. B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).
  19. Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc. 94(6), 1761–1765 (2011).
  20. S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).
  21. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
  22. Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
  23. J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).
  24. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
  25. Y. Lavi, A. Millo, and A. Katzir, “Flexible ordered bundles of infrared transmitting silver-halide fibers: design, fabrication, and optical measurements,” Appl. Opt. 45(23), 5808–5814 (2006).
    [PubMed]

2016 (2)

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24(23), 26565–26574 (2016).
[PubMed]

2015 (2)

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

2012 (3)

E. F. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
[PubMed]

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).

C. Huang, S. Kino, T. Katagiri, and Y. Matsuura, “Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle,” Appl. Opt. 51(29), 6913–6916 (2012).
[PubMed]

2011 (3)

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc. 94(6), 1761–1765 (2011).

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

2010 (3)

2009 (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).

2008 (1)

B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).

2006 (1)

2005 (2)

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).

I. Gannot, “Thermal imaging bundle-A potential tool to enhance minimally invasive medical procedures,” IEEE. Circ. Dev. Mag. 21(6), 28–33 (2005).

2004 (1)

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).

2003 (1)

A. R. Hilton, A. R. Hilton, J. McCord, W. S. Thompson, and R. A. Leblanc, “Infrared imaging with fiber optic bundles,” Proc. SPIE 5074, 849–854 (2003).

2000 (2)

E. Rave, L. Nagli, and A. Katzir, “Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers,” Opt. Lett. 25(17), 1237–1239 (2000).
[PubMed]

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).

1999 (1)

J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

1992 (1)

I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver-halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).

1987 (1)

P. Klocek, M. Roth, and R. D. Rock, “Chalcogenide glass optical fibers and image bundles - properties and applications,” Opt. Eng. 26(2), 88–95 (1987).

Aggarwal, I.

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

Ammer, K.

E. F. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
[PubMed]

Bagavathiappan, S.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).

Ben-David, M.

Bledt, C.

Boussard-Pledel, C.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).

Bungay, C. L.

J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Bureau, B.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).

Danto, S.

B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).

Faber, A.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

Gai, X.

Gal, U.

Gannot, I.

U. Gal, J. Harrington, M. Ben-David, C. Bledt, N. Syzonenko, and I. Gannot, “Coherent hollow-core waveguide bundles for thermal imaging,” Appl. Opt. 49(25), 4700–4709 (2010).
[PubMed]

I. Gannot, “Thermal imaging bundle-A potential tool to enhance minimally invasive medical procedures,” IEEE. Circ. Dev. Mag. 21(6), 28–33 (2005).

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).

Gattass, R.

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

Geng, J.

Gibson, D.

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

Gopal, V.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).

Goren, A.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).

Gulbiten, O.

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc. 94(6), 1761–1765 (2011).

Guo, W.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

Harrington, J.

Harrington, J. A.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).

Herzinger, C. M.

J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Hilfiker, J. N.

J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Hilton, A. R.

A. R. Hilton, A. R. Hilton, J. McCord, W. S. Thompson, and R. A. Leblanc, “Infrared imaging with fiber optic bundles,” Proc. SPIE 5074, 849–854 (2003).

A. R. Hilton, A. R. Hilton, J. McCord, W. S. Thompson, and R. A. Leblanc, “Infrared imaging with fiber optic bundles,” Proc. SPIE 5074, 849–854 (2003).

Huang, C.

Jayakumar, T.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).

Jiang, S.

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc. 94(6), 1761–1765 (2011).

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360–3362 (2010).
[PubMed]

Johs, B. D.

J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Katagiri, T.

Katzir, A.

Y. Lavi, A. Millo, and A. Katzir, “Flexible ordered bundles of infrared transmitting silver-halide fibers: design, fabrication, and optical measurements,” Appl. Opt. 45(23), 5808–5814 (2006).
[PubMed]

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).

E. Rave, L. Nagli, and A. Katzir, “Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers,” Opt. Lett. 25(17), 1237–1239 (2000).
[PubMed]

I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver-halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).

Kino, S.

Klocek, P.

P. Klocek, M. Roth, and R. D. Rock, “Chalcogenide glass optical fibers and image bundles - properties and applications,” Opt. Eng. 26(2), 88–95 (1987).

Kobayashi, T.

Lahiri, B. B.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).

Lavi, Y.

Y. Lavi, A. Millo, and A. Katzir, “Flexible ordered bundles of infrared transmitting silver-halide fibers: design, fabrication, and optical measurements,” Appl. Opt. 45(23), 5808–5814 (2006).
[PubMed]

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).

Leblanc, R. A.

A. R. Hilton, A. R. Hilton, J. McCord, W. S. Thompson, and R. A. Leblanc, “Infrared imaging with fiber optic bundles,” Proc. SPIE 5074, 849–854 (2003).

Li, L.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Lucas, J.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).

Lucas, P.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc. 94(6), 1761–1765 (2011).

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360–3362 (2010).
[PubMed]

Luo, T.

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc. 94(6), 1761–1765 (2011).

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360–3362 (2010).
[PubMed]

Luther-Davies, B.

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Ma, H.

B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).

Matsuura, Y.

Maurugeon, S.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

McCord, J.

A. R. Hilton, A. R. Hilton, J. McCord, W. S. Thompson, and R. A. Leblanc, “Infrared imaging with fiber optic bundles,” Proc. SPIE 5074, 849–854 (2003).

Millo, A.

Y. Lavi, A. Millo, and A. Katzir, “Flexible ordered bundles of infrared transmitting silver-halide fibers: design, fabrication, and optical measurements,” Appl. Opt. 45(23), 5808–5814 (2006).
[PubMed]

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).

Mobley, S. B.

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

Nagli, L.

Naito, K.

Nguyen, V.

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

Paiss, I.

I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver-halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).

Philip, J.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).

Qi, S.

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Rave, E.

E. Rave, L. Nagli, and A. Katzir, “Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers,” Opt. Lett. 25(17), 1237–1239 (2000).
[PubMed]

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).

Ring, E. F.

E. F. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
[PubMed]

Rock, R. D.

P. Klocek, M. Roth, and R. D. Rock, “Chalcogenide glass optical fibers and image bundles - properties and applications,” Opt. Eng. 26(2), 88–95 (1987).

Roth, M.

P. Klocek, M. Roth, and R. D. Rock, “Chalcogenide glass optical fibers and image bundles - properties and applications,” Opt. Eng. 26(2), 88–95 (1987).

Sanghera, J.

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

Shaw, B.

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

Shemesh, D.

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).

Synowicki, R. A.

J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Syzonenko, N.

Tang, D.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

Tao, G.

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Tao, H.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

Thompson, W. S.

A. R. Hilton, A. R. Hilton, J. McCord, W. S. Thompson, and R. A. Leblanc, “Infrared imaging with fiber optic bundles,” Proc. SPIE 5074, 849–854 (2003).

Wang, R.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

Wang, Y. W.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

Woollam, J. A.

J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Yang, A.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

Yang, A. P.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

Yang, Y.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

Yang, Z.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc. 94(6), 1761–1765 (2011).

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360–3362 (2010).
[PubMed]

Yang, Z. J.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

Yang, Z. Y.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

Yu, Y.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

Zhai, C.

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Zhang, B.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[PubMed]

Zhang, X.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).

Appl. Opt. (3)

Appl. Phys. Lett. (3)

I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver-halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).

Biomed. Opt. Express (1)

IEEE. Circ. Dev. Mag. (1)

I. Gannot, “Thermal imaging bundle-A potential tool to enhance minimally invasive medical procedures,” IEEE. Circ. Dev. Mag. 21(6), 28–33 (2005).

Infrared Phys. Technol. (1)

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).

J. Am. Ceram. Soc. (2)

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc. 94(6), 1761–1765 (2011).

J. Non-Cryst. Solids (1)

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).

Opt. Eng. (2)

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).

P. Klocek, M. Roth, and R. D. Rock, “Chalcogenide glass optical fibers and image bundles - properties and applications,” Opt. Eng. 26(2), 88–95 (1987).

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33(4), 660–663 (2011).

Physiol. Meas. (1)

E. F. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
[PubMed]

Proc. SPIE (3)

J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

A. R. Hilton, A. R. Hilton, J. McCord, W. S. Thompson, and R. A. Leblanc, “Infrared imaging with fiber optic bundles,” Proc. SPIE 5074, 849–854 (2003).

S. B. Mobley, B. Shaw, D. Gibson, V. Nguyen, R. Gattass, J. Sanghera, and I. Aggarwal, “IR imaging bundles for HWIL testing,” Proc. SPIE 8015, 801503 (2011).

Solid State Sci. (1)

B. Bureau, S. Danto, H. Ma, C. Boussard-Pledel, X. Zhang, and J. Lucas, “Tellurium based glasses: A ruthless glass to crystal competition,” Solid State Sci. 10(4), 427–433 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of fabrication process of the FB using the improved stack-and-draw method: (a) drawing of single fibers; (b) stacking of single fibers and drawing of multi-fibers; (c) stacking of multi-fibers and forming of the FB; (d) the image of the obtained flexible FB with a length of 200 mm.

Fig. 2
Fig. 2

Transmission losses of (a) the fabricated GeATSe/PEI fiber with a core diameter of 354 μm and a cladding diameter of 400 μm, and (b) As2S3/PEI fiber with a core diameter of 360 μm and a cladding diameter of 400 μm; and (c) black-body radiation spectrum at 37°C.

Fig. 3
Fig. 3

(a) A part of cross section of the fabricated GATSe/PEI FB consisting of 200,000 single fibers; and (b) a thermal image of a human hand taken by an FLIR T640 camera through the FB with a length of 50 mm.

Fig. 4
Fig. 4

(a) MTF of fabricated GATSe/PEI FB obtained by the knife-edge method. The inset image is the evolution of the total output intensity during the knife-edge measurement. (b) Light intensity distribution on the output end of the fabricated GATSe/PEI FB in a crosstalk measurement.

Metrics