Abstract

A chiral nematic (N*) liquid crystal (LC) was hybridized with a z-cut iron doped lithium niobate (Fe:LN) substrate and exposed with a focused continuous wave diode laser beam. The N* LC layer was confined with a cover glass to provide a homogeneous LC layer thickness. Two distinct kinds of test cells were investigated, one with an uncoated glass covering slip and one with an indium tin oxide (ITO) coated cover glass. Photo generated electric fields (generated in the Fe:LN) resulted in a localized defect formation and textural transitions in the N* LC. Due to field confinement, the field induced responses were more localized in samples with ITO coated cover glasses. By scanning the laser beam on programmed trajectories, formation of persistent patterns could be achieved in the N* LC layer. Polarized optical microscopy of the exposed samples revealed that these patterns consisted of adjacent circular Frank-Pryce defects. Exposure with a slightly defocused laser beam could be applied selectively to erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives, and touch sensitive devices in a hybridized N* LC with micron accuracy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically generated reconfigurable photonic structures of elastic quasiparticles in frustrated cholesteric liquid crystals

Ivan I. Smalyukh, Daniel Kaputa, Aliaksandr V. Kachynski, Andrey N. Kuzmin, Paul J. Ackerman, Christopher W. Twombly, Taewoo Lee, Rahul P. Trivedi, and Paras N. Prasad
Opt. Express 20(7) 6870-6880 (2012)

Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring

Igor Gvozdovskyy, Oleg Yaroshchuk, Marina Serbina, and Rumiko Yamaguchi
Opt. Express 20(4) 3499-3508 (2012)

Cholesteric liquid crystal–carbon nanotube composites with photo-settable reversible and memory electro-optic modes

Oleg Yaroshchuk, Sergiy Tomylko, Igor Gvozdovskyy, and Rumiko Yamaguchi
Appl. Opt. 52(22) E53-E59 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Glass, D. Von der Linde, and D. T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974).
  2. J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
    [PubMed]
  3. M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Applied Physics Reviews 2, 40605 (2015).
  4. M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).
  5. P. A. Augustov and K. K. Shvarts, “Surface recombination and photorefraction in LiNbO3-Fe Crystals,” Appl. Phys. 18, 399–401 (1979).
  6. D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).
  7. W. Massa, Crystal Structure Determination (Springer, 2000).
  8. C. Arregui, J. B. Ramiro, A. Alcazar, A. Mendez, J. F. Munoz-Martinez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” Journal of the European Optical Society: Rapid Publications 10, 15026 (2015).
  9. L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
  10. J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. R. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31(7), 993–995 (2006).
    [PubMed]
  11. J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).
  12. L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Liquid crystal cells based on photovoltaic substrates,” J Eur. Opt. Soc.- Rapid. 11, 16007 (2016).
  13. L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Light controlled phase shifter for optofluidics,” Opt. Lett. 41(2), 333–335 (2016).
    [PubMed]
  14. L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).
  15. A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 96(2-1), 022701 (2017).
    [PubMed]
  16. A. Habibpourmoghadam, L. Jiao, L. Lucchetti, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Confined photovoltaic fields in a photo-responsive liquid crystal test cell,” in I. C. Khoo, ed. Liquid Crystals XXI, Proceedings Volume 10361, 1036112 (SPIE, 2017).
  17. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays, Wiley SID Series in Display Technology (Wiley, 2001).
  18. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, Second edition, Wiley Series in Display Technology (Wiley, 2015).
  19. B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15, 44021 (2013).
  20. P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
    [PubMed]
  21. M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).
  22. C. Loussert and E. Brasselet, “Multiple chiral topological states in liquid crystals from unstructured light beams,” Appl. Phys. Lett. 104, 51911 (2014).
  23. I. I. Smalyukh, D. Kaputa, A. V. Kachynski, A. N. Kuzmin, P. J. Ackerman, C. W. Twombly, T. Lee, R. P. Trivedi, and P. N. Prasad, “Optically generated reconfigurable photonic structures of elastic quasiparticles in frustrated cholesteric liquid crystals,” Opt. Express 20(7), 6870–6880 (2012).
    [PubMed]
  24. M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable Optical Storage in Bistable Liquid Crystal Cells,” Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 223, 219–227 (1992).
  25. B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991).
  26. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications, Wiley SID Series in Display Technology (Wiley, 2008).
  27. K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
    [PubMed]
  28. O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22, 286–300 (2012).
  29. H.-S. Kwok, V. G. Chigrinov, H. Takada, and H. Takatsu, “New Developments in Liquid Crystal Photo-Aligning by Azo-Dyes,” J. Disp. Technol. 1, 41–50 (2005).
  30. J. Y. L. Ho, V. G. Chigrinov, and H. S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90, 243506 (2007).
  31. V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal anchoring of liquid crystals at the surface of photo-induced anisotropic films,” Appl. Phys., A Mater. Sci. Process. 64, 615–618 (1997).
  32. C. Ruslim and K. Ichimura, “Photocontrolled Alignment of Chiral Nematic Liquid Crystals,” Adv. Mater. 13, 641–644 (2001).
  33. D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
    [PubMed]
  34. J. D. Jackson, Classical Electrodynamics, 3rd ed (Wiley, 1999).
  35. A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).
  36. R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
    [PubMed]
  37. R. M. Hyman, A. Lorenz, and T. D. Wilkinson, “Phase modulation using different orientations of a chiral nematic in liquid crystal over silicon devices,” Liq. Cryst. 43(1), 83–90 (2016).
  38. I. Dierking, Textures of Liquid Crystals (Wiley-VCH, 2006).
  39. F. Xu and P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 6853–6860 (1997).
  40. Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7, 2727 (2017).
  41. H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118, 63102 (2015).
  42. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [PubMed]
  43. R. F. Service, “Beyond graphene,” Science 348(6234), 490–492 (2015).
    [PubMed]

2017 (3)

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 96(2-1), 022701 (2017).
[PubMed]

Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7, 2727 (2017).

2016 (5)

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, “Phase modulation using different orientations of a chiral nematic in liquid crystal over silicon devices,” Liq. Cryst. 43(1), 83–90 (2016).

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Light controlled phase shifter for optofluidics,” Opt. Lett. 41(2), 333–335 (2016).
[PubMed]

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Liquid crystal cells based on photovoltaic substrates,” J Eur. Opt. Soc.- Rapid. 11, 16007 (2016).

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

2015 (3)

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Applied Physics Reviews 2, 40605 (2015).

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118, 63102 (2015).

R. F. Service, “Beyond graphene,” Science 348(6234), 490–492 (2015).
[PubMed]

2014 (3)

R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
[PubMed]

C. Loussert and E. Brasselet, “Multiple chiral topological states in liquid crystals from unstructured light beams,” Appl. Phys. Lett. 104, 51911 (2014).

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

2013 (2)

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15, 44021 (2013).

2012 (4)

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

I. I. Smalyukh, D. Kaputa, A. V. Kachynski, A. N. Kuzmin, P. J. Ackerman, C. W. Twombly, T. Lee, R. P. Trivedi, and P. N. Prasad, “Optically generated reconfigurable photonic structures of elastic quasiparticles in frustrated cholesteric liquid crystals,” Opt. Express 20(7), 6870–6880 (2012).
[PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances,” ACS Nano 6(9), 7806–7813 (2012).
[PubMed]

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22, 286–300 (2012).

2011 (1)

2010 (1)

M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).

2007 (1)

J. Y. L. Ho, V. G. Chigrinov, and H. S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90, 243506 (2007).

2006 (2)

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. R. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31(7), 993–995 (2006).
[PubMed]

2005 (1)

H.-S. Kwok, V. G. Chigrinov, H. Takada, and H. Takatsu, “New Developments in Liquid Crystal Photo-Aligning by Azo-Dyes,” J. Disp. Technol. 1, 41–50 (2005).

2002 (1)

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

2001 (1)

C. Ruslim and K. Ichimura, “Photocontrolled Alignment of Chiral Nematic Liquid Crystals,” Adv. Mater. 13, 641–644 (2001).

2000 (1)

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[PubMed]

1997 (2)

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal anchoring of liquid crystals at the surface of photo-induced anisotropic films,” Appl. Phys., A Mater. Sci. Process. 64, 615–618 (1997).

F. Xu and P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 6853–6860 (1997).

1992 (1)

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable Optical Storage in Bistable Liquid Crystal Cells,” Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 223, 219–227 (1992).

1991 (1)

B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991).

1979 (1)

P. A. Augustov and K. K. Shvarts, “Surface recombination and photorefraction in LiNbO3-Fe Crystals,” Appl. Phys. 18, 399–401 (1979).

1974 (1)

A. M. Glass, D. Von der Linde, and D. T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974).

Ackerman, P. J.

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

I. I. Smalyukh, D. Kaputa, A. V. Kachynski, A. N. Kuzmin, P. J. Ackerman, C. W. Twombly, T. Lee, R. P. Trivedi, and P. N. Prasad, “Optically generated reconfigurable photonic structures of elastic quasiparticles in frustrated cholesteric liquid crystals,” Opt. Express 20(7), 6870–6880 (2012).
[PubMed]

Agulló-López, F.

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Applied Physics Reviews 2, 40605 (2015).

J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[PubMed]

Allen, A. S.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

Ananthamurthy, S.

M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).

Argiolas, N.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Augustov, P. A.

P. A. Augustov and K. K. Shvarts, “Surface recombination and photorefraction in LiNbO3-Fe Crystals,” Appl. Phys. 18, 399–401 (1979).

Basun, S. A.

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

Bettella, G.

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

Blázquez-Castro, A.

Brasselet, E.

C. Loussert and E. Brasselet, “Multiple chiral topological states in liquid crystals from unstructured light beams,” Appl. Phys. Lett. 104, 51911 (2014).

B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15, 44021 (2013).

Bunning, T. J.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

Burgos, H.

Carns, J. L.

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. R. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31(7), 993–995 (2006).
[PubMed]

Carrascosa, M.

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Applied Physics Reviews 2, 40605 (2015).

J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[PubMed]

Castles, F.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

Chigrinov, V. G.

J. Y. L. Ho, V. G. Chigrinov, and H. S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90, 243506 (2007).

H.-S. Kwok, V. G. Chigrinov, H. Takada, and H. Takatsu, “New Developments in Liquid Crystal Photo-Aligning by Azo-Dyes,” J. Disp. Technol. 1, 41–50 (2005).

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal anchoring of liquid crystals at the surface of photo-induced anisotropic films,” Appl. Phys., A Mater. Sci. Process. 64, 615–618 (1997).

Choi, S. S.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

Ciciulla, F.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

Cipparrone, G.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

Coles, H. J.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

Cook, G.

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. R. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31(7), 993–995 (2006).
[PubMed]

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

Cristiani, I.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Crooker, P. P.

F. Xu and P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 6853–6860 (1997).

Dal Negro, L.

Denz, C.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Eidenschink, R.

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable Optical Storage in Bistable Liquid Crystal Cells,” Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 223, 219–227 (1992).

Esseling, M.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Evans, D. R.

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 96(2-1), 022701 (2017).
[PubMed]

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. R. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31(7), 993–995 (2006).
[PubMed]

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances,” ACS Nano 6(9), 7806–7813 (2012).
[PubMed]

García-Cabañes, A.

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Applied Physics Reviews 2, 40605 (2015).

García-Cabañes, Á.

Gardiner, D. J.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

Giocondo, M.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

Glass, A. M.

A. M. Glass, D. Von der Linde, and D. T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974).

Guha, S.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

Habibpourmoghadam, A.

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 96(2-1), 022701 (2017).
[PubMed]

Hatwalne, Y.

M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).

Ho, J. Y. L.

J. Y. L. Ho, V. G. Chigrinov, and H. S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90, 243506 (2007).

Hyman, R. M.

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, “Phase modulation using different orientations of a chiral nematic in liquid crystal over silicon devices,” Liq. Cryst. 43(1), 83–90 (2016).

R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
[PubMed]

Ichimura, K.

C. Ruslim and K. Ichimura, “Photocontrolled Alignment of Chiral Nematic Liquid Crystals,” Adv. Mater. 13, 641–644 (2001).

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[PubMed]

Imbrock, J.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Jerome, B.

B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991).

Jiao, L.

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 96(2-1), 022701 (2017).
[PubMed]

Jubera, M.

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Applied Physics Reviews 2, 40605 (2015).

Kachynski, A. V.

Kaputa, D.

Kasyanyuk, D.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

Kim, W.-S.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

Kitzerow, H.-S.

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal anchoring of liquid crystals at the surface of photo-induced anisotropic films,” Appl. Phys., A Mater. Sci. Process. 64, 615–618 (1997).

Kreuzer, M.

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable Optical Storage in Bistable Liquid Crystal Cells,” Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 223, 219–227 (1992).

Kushnir, K.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Light controlled phase shifter for optofluidics,” Opt. Lett. 41(2), 333–335 (2016).
[PubMed]

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Liquid crystal cells based on photovoltaic substrates,” J Eur. Opt. Soc.- Rapid. 11, 16007 (2016).

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

Kuzmin, A. N.

Kwok, H. S.

J. Y. L. Ho, V. G. Chigrinov, and H. S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90, 243506 (2007).

Kwok, H.-S.

H.-S. Kwok, V. G. Chigrinov, H. Takada, and H. Takatsu, “New Developments in Liquid Crystal Photo-Aligning by Azo-Dyes,” J. Disp. Technol. 1, 41–50 (2005).

Lansac, Y.

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

Laviada, M. J.

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

Lee, T.

Lin, Y.

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

Lorenz, A.

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 96(2-1), 022701 (2017).
[PubMed]

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, “Phase modulation using different orientations of a chiral nematic in liquid crystal over silicon devices,” Liq. Cryst. 43(1), 83–90 (2016).

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
[PubMed]

Loussert, C.

C. Loussert and E. Brasselet, “Multiple chiral topological states in liquid crystals from unstructured light beams,” Appl. Phys. Lett. 104, 51911 (2014).

Lucchetti, L.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Light controlled phase shifter for optofluidics,” Opt. Lett. 41(2), 333–335 (2016).
[PubMed]

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Liquid crystal cells based on photovoltaic substrates,” J Eur. Opt. Soc.- Rapid. 11, 16007 (2016).

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

Madhusudana, N. V.

M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).

Mazzulla, A.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

Morris, S. M.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
[PubMed]

Mosallaeipour, M.

M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).

Nava, G.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Negran, D. T. J.

A. M. Glass, D. Von der Linde, and D. T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974).

Overvig, A. C.

Pagliusi, P.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

Pottenger, T. P.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

Pozza, G.

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

Prasad, P. N.

Provenzano, C.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

Qasim, M. M.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

Qi, Z.

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances,” ACS Nano 6(9), 7806–7813 (2012).
[PubMed]

Ramiro, J. B.

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Applied Physics Reviews 2, 40605 (2015).

Reshetnyak, V.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 96(2-1), 022701 (2017).
[PubMed]

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

Reznikov, Y.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22, 286–300 (2012).

Ruslim, C.

C. Ruslim and K. Ichimura, “Photocontrolled Alignment of Chiral Nematic Liquid Crystals,” Adv. Mater. 13, 641–644 (2001).

Sada, C.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Saleh, M. A.

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. R. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31(7), 993–995 (2006).
[PubMed]

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

Serak, S. V.

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. R. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31(7), 993–995 (2006).
[PubMed]

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

Service, R. F.

R. F. Service, “Beyond graphene,” Science 348(6234), 490–492 (2015).
[PubMed]

Shrestha, S.

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances,” ACS Nano 6(9), 7806–7813 (2012).
[PubMed]

Shvarts, K. K.

P. A. Augustov and K. K. Shvarts, “Surface recombination and photorefraction in LiNbO3-Fe Crystals,” Appl. Phys. 18, 399–401 (1979).

Simoni, F.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Light controlled phase shifter for optofluidics,” Opt. Lett. 41(2), 333–335 (2016).
[PubMed]

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Liquid crystal cells based on photovoltaic substrates,” J Eur. Opt. Soc.- Rapid. 11, 16007 (2016).

Smalyukh, I. I.

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

I. I. Smalyukh, D. Kaputa, A. V. Kachynski, A. N. Kuzmin, P. J. Ackerman, C. W. Twombly, T. Lee, R. P. Trivedi, and P. N. Prasad, “Optically generated reconfigurable photonic structures of elastic quasiparticles in frustrated cholesteric liquid crystals,” Opt. Express 20(7), 6870–6880 (2012).
[PubMed]

Tabiryan, N. V.

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. R. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31(7), 993–995 (2006).
[PubMed]

Takada, H.

H.-S. Kwok, V. G. Chigrinov, H. Takada, and H. Takatsu, “New Developments in Liquid Crystal Photo-Aligning by Azo-Dyes,” J. Disp. Technol. 1, 41–50 (2005).

Takatsu, H.

H.-S. Kwok, V. G. Chigrinov, H. Takada, and H. Takatsu, “New Developments in Liquid Crystal Photo-Aligning by Azo-Dyes,” J. Disp. Technol. 1, 41–50 (2005).

Trivedi, R. P.

Tschudi, T.

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable Optical Storage in Bistable Liquid Crystal Cells,” Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 223, 219–227 (1992).

Twombly, C. W.

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

I. I. Smalyukh, D. Kaputa, A. V. Kachynski, A. N. Kuzmin, P. J. Ackerman, C. W. Twombly, T. Lee, R. P. Trivedi, and P. N. Prasad, “Optically generated reconfigurable photonic structures of elastic quasiparticles in frustrated cholesteric liquid crystals,” Opt. Express 20(7), 6870–6880 (2012).
[PubMed]

Vasnetsov, M.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

Villarroel, J.

Von der Linde, D.

A. M. Glass, D. Von der Linde, and D. T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974).

Vorflusev, V. P.

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal anchoring of liquid crystals at the surface of photo-induced anisotropic films,” Appl. Phys., A Mater. Sci. Process. 64, 615–618 (1997).

Wang, H.

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118, 63102 (2015).

Wang, R.

Wang, Y.

Wilkinson, T. D.

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, “Phase modulation using different orientations of a chiral nematic in liquid crystal over silicon devices,” Liq. Cryst. 43(1), 83–90 (2016).

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
[PubMed]

Xu, F.

F. Xu and P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 6853–6860 (1997).

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances,” ACS Nano 6(9), 7806–7813 (2012).
[PubMed]

Yang, B.

B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15, 44021 (2013).

Yaroshchuk, O.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22, 286–300 (2012).

Yu, N.

Zaltron, A.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Light controlled phase shifter for optofluidics,” Opt. Lett. 41(2), 333–335 (2016).
[PubMed]

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Liquid crystal cells based on photovoltaic substrates,” J Eur. Opt. Soc.- Rapid. 11, 16007 (2016).

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Zhang, J.

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118, 63102 (2015).

Zhang, R.

Zhao, H.

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118, 63102 (2015).

ACS Nano (1)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances,” ACS Nano 6(9), 7806–7813 (2012).
[PubMed]

Adv. Mater. (1)

C. Ruslim and K. Ichimura, “Photocontrolled Alignment of Chiral Nematic Liquid Crystals,” Adv. Mater. 13, 641–644 (2001).

Appl. Opt. (1)

Appl. Phys. (1)

P. A. Augustov and K. K. Shvarts, “Surface recombination and photorefraction in LiNbO3-Fe Crystals,” Appl. Phys. 18, 399–401 (1979).

Appl. Phys. B (1)

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113, 191–197 (2013).

Appl. Phys. Lett. (4)

C. Loussert and E. Brasselet, “Multiple chiral topological states in liquid crystals from unstructured light beams,” Appl. Phys. Lett. 104, 51911 (2014).

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W.-S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104, 71102 (2014).

A. M. Glass, D. Von der Linde, and D. T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974).

J. Y. L. Ho, V. G. Chigrinov, and H. S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90, 243506 (2007).

Appl. Phys., A Mater. Sci. Process. (1)

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal anchoring of liquid crystals at the surface of photo-induced anisotropic films,” Appl. Phys., A Mater. Sci. Process. 64, 615–618 (1997).

Applied Physics Reviews (1)

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Applied Physics Reviews 2, 40605 (2015).

Chem. Rev. (1)

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[PubMed]

IEEEE J. Quantum Elect. (1)

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEEE J. Quantum Elect. 38, 1661 (2002).

J Eur. Opt. Soc.- Rapid. (1)

L. Lucchetti, K. Kushnir, A. Zaltron, and F. Simoni, “Liquid crystal cells based on photovoltaic substrates,” J Eur. Opt. Soc.- Rapid. 11, 16007 (2016).

J. Appl. Phys. (1)

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118, 63102 (2015).

J. Disp. Technol. (1)

H.-S. Kwok, V. G. Chigrinov, H. Takada, and H. Takatsu, “New Developments in Liquid Crystal Photo-Aligning by Azo-Dyes,” J. Disp. Technol. 1, 41–50 (2005).

J. Mater. Chem. (1)

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22, 286–300 (2012).

J. Mod. Opt. (1)

M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).

J. Opt. (1)

B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15, 44021 (2013).

Liq. Cryst. (1)

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, “Phase modulation using different orientations of a chiral nematic in liquid crystal over silicon devices,” Liq. Cryst. 43(1), 83–90 (2016).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, S. A. Basun, and D. R. Evans, “Photovoltaic field-induced self-phase modulation of light in liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453, 83–92 (2006).

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals (1)

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable Optical Storage in Bistable Liquid Crystal Cells,” Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 223, 219–227 (1992).

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 96(2-1), 022701 (2017).
[PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

F. Xu and P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 6853–6860 (1997).

Proceedings of SPIE Volume 9940, Liq. Cryst. (1)

L. Lucchetti, K. Kushnir, F. Ciciulla, A. Zaltron, G. Bettella, G. Pozza, C. Sada, V. Reshetnyak, and F. Simoni, “All-optical phase shifter with photovoltaic liquid crystal cell,” Proceedings of SPIE Volume 9940, Liq. Cryst. XX,  994099400G (2016).

Rep. Prog. Phys. (1)

B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991).

Sci. Rep. (2)

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6, 20742 (2016).
[PubMed]

P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. Smalyukh, “Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities,” Sci. Rep. 2, 414 (2012).
[PubMed]

Science (1)

R. F. Service, “Beyond graphene,” Science 348(6234), 490–492 (2015).
[PubMed]

Other (8)

J. D. Jackson, Classical Electrodynamics, 3rd ed (Wiley, 1999).

I. Dierking, Textures of Liquid Crystals (Wiley-VCH, 2006).

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications, Wiley SID Series in Display Technology (Wiley, 2008).

A. Habibpourmoghadam, L. Jiao, L. Lucchetti, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Confined photovoltaic fields in a photo-responsive liquid crystal test cell,” in I. C. Khoo, ed. Liquid Crystals XXI, Proceedings Volume 10361, 1036112 (SPIE, 2017).

S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays, Wiley SID Series in Display Technology (Wiley, 2001).

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, Second edition, Wiley Series in Display Technology (Wiley, 2015).

W. Massa, Crystal Structure Determination (Springer, 2000).

C. Arregui, J. B. Ramiro, A. Alcazar, A. Mendez, J. F. Munoz-Martinez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” Journal of the European Optical Society: Rapid Publications 10, 15026 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Photographs of hybridized samples (Fe:LN substrates, samples filled with N* LC) placed in-between crossed polarizers and recorded with a camera. (a) Sample with microscopy cover slip. (b) Sample with ITO coated cover glass.

Fig. 2
Fig. 2

Transmittance vs wavelength recorded in a reference sample. A schematic of the chiral nematic helix and selectively reflected wavelength (Bragg wavelength) is shown.

Fig. 3
Fig. 3

Schematic of the exposure beam-steering setup and sample (not to scale).

Fig. 4
Fig. 4

Simulated electric field distributions in two distinct kinds of samples. The normalized electric field distribution is show as vector field (blue) and the electric potential is shown as shaded region. (a) Hybridized sample with a glass covering plate. (b) Hybridized sample with an ITO coated covering glass plate.

Fig. 5
Fig. 5

Polarized optical micrographs (recorded in the exposure setup with edgepass filter inserted, crossed polarizers). (a) Sample in the initial state. (b) Laser shutter opened. (b) Exposed for 10 s.

Fig. 6
Fig. 6

(a) The focused laser beam was scanned on a programmed trajectory (optical micrographs recorded in the exposure setup without edgepass filter and with diminished exposure intensity). (b) Textural changes observed in the N* LC when scanning the laser beam on the same trajectory (full intensity beam, crossed polarizers, edgepass filter inserted).

Fig. 7
Fig. 7

(a) A slightly defocused laser beam was scanned on a programmed trajectory (optical micrographs recorded in the exposure setup without edgepass filter and with diminished exposure intensity). (b) Textural changes observed in the N* LC when scanning the defocused laser beam on the same trajectory (full intensity beam, crossed polarizers, edgepass filter inserted).

Fig. 8
Fig. 8

Polarized optical micrographs of a sample with inscribed pattern. Recorded (a) in the exposure setup with edgepass filter inserted, (b) with edgepass filter removed, (c) in a conventional polarized optical microscope.

Fig. 9
Fig. 9

Micrographs of a field induced, persistent single point defect in a sample rotated in-between crossed polarizers.

Fig. 10
Fig. 10

Schematic of possible structure of the point defect. (a) A radial defect confined in a chiral nematic environment. Helical unwinding could occur near the interface with the chiral nematic LC. (b) Frank-Pryce defect. A chiral domain with focal conic defect structure is confined in a chiral nematic environment.

Fig. 11
Fig. 11

Field distribution, schematic of local helix realignment while field was induced (red colored helices) and in the field off state (green colored helices). The beam waist is indicated as black line. (a) Distribution of the electric field in an exposed sample, where the intensity was high enough to result in helix realignment. The average (surface near) field is shown as red arrows. For better visibility, the average field vectors (red arrows) were scaled by a factor of 2. (b) Distribution of average electric field and schematic of resulting local helix alignment in a sample exposed with a focused beam with narrow beam waist and (c) in a sample exposed with a defocused beam with broader beam waist.

Metrics