Abstract

A systematic study was performed, both experimentally and theoretically, to investigate the structural periodicity of nanogratings inscribed by focused femtosecond pulses on the surface of dielectrics. The results surprisingly show that although nanogratings generally appear periodic they are in fact intrinsically aperiodic. In the perpendicular writing scheme, the groove spacing gradually decreases from the middle part towards both sides. In the parallel writing scheme, the groove spacing varies quasiperiodically and the variation differs with respect to pulse-to-pulse spacing. Constant groove spacing was obtained only for a particular pulse-to-pulse spacing. These Gaussian-apodized and quasiperiodic variations are found to be intrinsic. They arise from the fact that the grooves are created, depending on the writing scheme, either by a series of local-lobes with different amplitudes and material feedbacks or by a repeated generated leading side-lobe with similar but not identical amplitudes and material feedbacks. The production of each single grooves result from a nonlinear and localized process from which arises its aperiodic nature. All these intrinsically Gaussian-apodized and quasiperiodic variations can be well interpreted based on the incubation-based nanoplasmonic model.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanism of nanograting formation on the surface of fused silica

Feng Liang, Réal Vallée, and See Leang Chin
Opt. Express 20(4) 4389-4396 (2012)

Role of ablation and incubation processes on surface nanograting formation

Feng Liang, Réal Vallée, Daniel Gingras, and See Leang Chin
Opt. Mater. Express 1(7) 1244-1250 (2011)

Physical evolution of nanograting inscription on the surface of fused silica

Feng Liang, Réal Vallée, and See Leang Chin
Opt. Mater. Express 2(7) 900-906 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  2. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
    [Crossref]
  3. J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
    [Crossref]
  4. F. Liang, R. Vallée, and S. L. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2(7), 900–906 (2012).
    [Crossref]
  5. F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100, 251105 (2012).
    [Crossref]
  6. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
    [Crossref]
  7. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104, 503–507 (2011).
    [Crossref]
  8. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
    [Crossref]
  9. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
    [Crossref] [PubMed]
  10. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology,  21, 075304 (2010).
    [Crossref]
  11. F. Liang and R. Vallée, “Physical origin of nanograting formation on fused silica with femtosecond pulses,” Appl. Phys. Lett. 105, 131904 (2014).
    [Crossref]
  12. F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
    [Crossref]
  13. O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “Self-organized surface patterns originating from laser-induced instability,” in Progress in Nonlinear Nano-Optics, S. Sakabe, C. Lienau, and R. Grunwald, eds. (Springer, 2015).
  14. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [Crossref] [PubMed]
  15. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  16. A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93, 075427 (2016).
    [Crossref]
  17. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
    [Crossref] [PubMed]
  18. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
    [Crossref] [PubMed]
  19. S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
    [Crossref]
  20. J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81, 196 (2002).
    [Crossref]
  21. F. Liang, R. Vallée, D. Gingras, and S. L. Chin, “Role of ablation and incubation processes on surface nanograting formation,” Opt. Mater. Express 1(7), 1244–1250 (2011).
    [Crossref]
  22. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, ”Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373 (1999).
    [Crossref]

2016 (3)

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93, 075427 (2016).
[Crossref]

2015 (1)

F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
[Crossref]

2014 (1)

F. Liang and R. Vallée, “Physical origin of nanograting formation on fused silica with femtosecond pulses,” Appl. Phys. Lett. 105, 131904 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (3)

2010 (2)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology,  21, 075304 (2010).
[Crossref]

2009 (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

2008 (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

2006 (1)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

2005 (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

2002 (1)

J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81, 196 (2002).
[Crossref]

1999 (1)

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, ”Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373 (1999).
[Crossref]

Ashkenasi, D.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, ”Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373 (1999).
[Crossref]

Baumberg, J. J.

J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81, 196 (2002).
[Crossref]

Beresna, M.

J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

Bestehorn, M.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “Self-organized surface patterns originating from laser-induced instability,” in Progress in Nonlinear Nano-Optics, S. Sakabe, C. Lienau, and R. Grunwald, eds. (Springer, 2015).

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Bonse, J.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Bouchard, J.

F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
[Crossref]

Bricchi, E.

J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81, 196 (2002).
[Crossref]

Cerkauskaité, A.

J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Chin, S. L.

Colombier, J.-P.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93, 075427 (2016).
[Crossref]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Das, S. K.

Debroy, A.

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104, 503–507 (2011).
[Crossref]

Drevinskas, R.

J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Gecevicius, M.

Gingras, D.

Grunwald, R.

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104, 503–507 (2011).
[Crossref]

Herzlieb, M.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Höhm, S.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Huo, H.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology,  21, 075304 (2010).
[Crossref]

Itina, T. E.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93, 075427 (2016).
[Crossref]

Johnson, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology,  21, 075304 (2010).
[Crossref]

Kazansky, P. G.

J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81, 196 (2002).
[Crossref]

Krüger, J.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Liang, F.

F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
[Crossref]

F. Liang and R. Vallée, “Physical origin of nanograting formation on fused silica with femtosecond pulses,” Appl. Phys. Lett. 105, 131904 (2014).
[Crossref]

F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100, 251105 (2012).
[Crossref]

F. Liang, R. Vallée, and S. L. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2(7), 900–906 (2012).
[Crossref]

F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
[Crossref] [PubMed]

F. Liang, R. Vallée, D. Gingras, and S. L. Chin, “Role of ablation and incubation processes on surface nanograting formation,” Opt. Mater. Express 1(7), 1244–1250 (2011).
[Crossref]

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, ”Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373 (1999).
[Crossref]

Mazur, E.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology,  21, 075304 (2010).
[Crossref]

McGlynn, E.

Messaoudi, H.

Mills, J. D.

J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81, 196 (2002).
[Crossref]

Miura, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

Nolte, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104, 503–507 (2011).
[Crossref]

Patel, A.

J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Qiu, J.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

Qiu, J. R.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Reif, J.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “Self-organized surface patterns originating from laser-induced instability,” in Progress in Nonlinear Nano-Optics, S. Sakabe, C. Lienau, and R. Grunwald, eds. (Springer, 2015).

Richter, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104, 503–507 (2011).
[Crossref]

Rosenfeld, A.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, ”Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373 (1999).
[Crossref]

Rudenko, A.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93, 075427 (2016).
[Crossref]

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

Shen, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology,  21, 075304 (2010).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, ”Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373 (1999).
[Crossref]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Tünnermann, A.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104, 503–507 (2011).
[Crossref]

Vallée, R.

F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
[Crossref]

F. Liang and R. Vallée, “Physical origin of nanograting formation on fused silica with femtosecond pulses,” Appl. Phys. Lett. 105, 131904 (2014).
[Crossref]

F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100, 251105 (2012).
[Crossref]

F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
[Crossref] [PubMed]

F. Liang, R. Vallée, and S. L. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2(7), 900–906 (2012).
[Crossref]

F. Liang, R. Vallée, D. Gingras, and S. L. Chin, “Role of ablation and incubation processes on surface nanograting formation,” Opt. Mater. Express 1(7), 1244–1250 (2011).
[Crossref]

Varlamov, S.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “Self-organized surface patterns originating from laser-induced instability,” in Progress in Nonlinear Nano-Optics, S. Sakabe, C. Lienau, and R. Grunwald, eds. (Springer, 2015).

Varlamova, O.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “Self-organized surface patterns originating from laser-induced instability,” in Progress in Nonlinear Nano-Optics, S. Sakabe, C. Lienau, and R. Grunwald, eds. (Springer, 2015).

Wang, C.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology,  21, 075304 (2010).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass,” Adv. Mater. 22, 4039–4043 (2010).
[Crossref] [PubMed]

Appl. Phys. A (2)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104, 503–507 (2011).
[Crossref]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, ”Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373 (1999).
[Crossref]

Appl. Phys. Lett. (5)

F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100, 251105 (2012).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

F. Liang and R. Vallée, “Physical origin of nanograting formation on fused silica with femtosecond pulses,” Appl. Phys. Lett. 105, 131904 (2014).
[Crossref]

F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
[Crossref]

J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81, 196 (2002).
[Crossref]

Appl. Surf. Sci. (1)

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Laser Photon. Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

Nanotechnology (1)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology,  21, 075304 (2010).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (4)

Phys. Rev. B (1)

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93, 075427 (2016).
[Crossref]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Zhang, A. Čerkauskaité, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Other (1)

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “Self-organized surface patterns originating from laser-induced instability,” in Progress in Nonlinear Nano-Optics, S. Sakabe, C. Lienau, and R. Grunwald, eds. (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Nanograting inscribed at 230 nJ and 400 µm/s. (b) Cross-section profile of the yellow line marked in (a). (c) Gaussian-apodized groove spacing variation. The red curve is a Gaussian fitting.

Fig. 2
Fig. 2

(a) Nanograting inscribed at 260 nJ and 400 µm/s. (b) Gaussian-apodized groove spacing variation. The red curve is a Gaussian fitting. (c) Groove spacing with inner-grooves taken in account.

Fig. 3
Fig. 3

(a) In-depth cross-section view of a nanograting inscribed at 420 nJ and 400 µm/s on the surface of fused silica. A thin layer of platinum was deposited on top of the structure for protection and then a focused ion beam was used to etch away a certain amount of material for revealing the cross-section. (b) Gaussian-apodized groove spacing variation. (c) Gaussian-apodized groove depth variation. The red curves are Gaussian fittings.

Fig. 4
Fig. 4

(a) Local intensity distribution for the perpendicular writing scheme. Peak plasma density is assumed to be 2.3 × 1021/cm3. (b) Groove spacing variation along a Gaussian profile. (c) Comparison of local intensity distributions between two grooves.

Fig. 5
Fig. 5

Left column: nanograting inscribed at 110 nJ for three different pulse-to-pulse spacing set to 40, 50 and 60nm, respectively. Sample was cleaned in ultrasonic bath with 1% HF acid for 2 minutes before SEM analysis. Right column: Corresponding experimental and simulated results for groove spacing. The plasma density is assumed to be 2.3 × 1021/cm3.

Fig. 6
Fig. 6

(a) Schematic drawings showing the relationship between the laser peak and groove formation. The plot is simulation based on the nanoplasmonic model. (b) General case corresponding to the experimental results shown in Fig. 5(a) and (c). (c) Special case correponding to the experimental result shown in Fig. 5(b). The plasma density is assumed to be 2.3 × 1021/cm3.

Metrics