Abstract

We describe a CW laser stabilized to a low thermal expansion ceramic cavity which has a lower frequency drift rate than cavities based on ultralow-expansion glass (ULE), which are widely used as optical references. Two identical optical cavities with spacers of different material, ceramic and ULE, were assembled and the optical frequencies locked to each of these cavities were compared. The optical frequency drifts of both CW lasers were measured to within a precision of 10−11 in one second over the course of one year. The ceramic cavity had a long-term frequency drift rate of 4.9 mHz/s and the ULE cavity had one of 23 mHz/s.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors

Thomas Legero, Thomas Kessler, and Uwe Sterr
J. Opt. Soc. Am. B 27(5) 914-919 (2010)

Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s

Christian Hagemann, Christian Grebing, Christian Lisdat, Stephan Falke, Thomas Legero, Uwe Sterr, Fritz Riehle, Michael J. Martin, and Jun Ye
Opt. Lett. 39(17) 5102-5105 (2014)

Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium

Daisuke Akamatsu, Yoshiaki Nakajima, Hajime Inaba, Kazumoto Hosaka, Masami Yasuda, Atsushi Onae, and Feng-Lei Hong
Opt. Express 20(14) 16010-16016 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
    [PubMed]
  2. M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
    [PubMed]
  3. Ch. Eisele, A. Y. Nevsky, and S. Schiller, “Laboratory Test of the Isotropy of Light Propagation at the 10(-17) Level,” Phys. Rev. Lett. 103(9), 090401 (2009).
    [PubMed]
  4. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15),” Opt. Lett. 32(6), 641–643 (2007).
    [PubMed]
  5. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry- Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
  6. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
    [PubMed]
  7. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
  8. C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102–5105 (2014).
    [PubMed]
  9. D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
    [PubMed]
  10. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [PubMed]
  11. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
  12. U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).
  13. J. Hall, “Frequency Stabilized Laser - a Parochial Review,” Proc. SPIE 1837, 2 (1992).
  14. S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
    [PubMed]
  15. J. Sugawara and C. Maloney, “Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF),” Proc. SPIE 9912, 99120L (2016).
  16. T. Kamiya, J. Sugawara, T. Mizutani, S. Yasuda, and K. Kitamoto, “EARLY STUDY ON THE APPLICATION OF NEXCERA ULTRA LOW THERMAL EXPANSION CERAMIC TO SPACE TELESCOPES,” in Proceedings of ICSO 2016, http://esaconferencebureau.com/custom/icso/2016/fullpaper/FP_IC_034.pdf .
  17. J. Sugawara, H. Unno, N. Kougi, Y. Kuma, and K. Abe, ““NEXCERA”, Zero Thermal Expansion Ceramics For Optical Applications,” in Proceedings of ASPE 2010 Annual Meeting, 50, 405–407 (2010).
  18. H. Unno, S. Toh, J. Sugawara, K. Hattori, S. Uehara, and S. Matsumura, “Microstructure of La-doped low thermal expansion cordierite ceramics,” in Proceedings of 36th International Conference on Advanced Ceramics and Composites, ICACC-S1–037 (2012).
  19. K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).
  20. N. Kuse, A. Ozawa, Y. Nomura, I. Ito, and Y. Kobayashi, “Injection locking of Yb-fiber based optical frequency comb,” Opt. Express 20(10), 10509–10518 (2012).
    [PubMed]
  21. M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30(14), 1815–1817 (2005).
    [PubMed]
  22. L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).
  23. C. Hawthorn, K. Weber, and R. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
  24. R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).
  25. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4(4), 406–411 (2017).
  26. M. Endo, I. Ito, and Y. Kobayashi, “Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y2O3 ceramic laser,” Opt. Express 23(2), 1276–1282 (2015).
    [PubMed]

2017 (2)

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4(4), 406–411 (2017).

2016 (1)

J. Sugawara and C. Maloney, “Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF),” Proc. SPIE 9912, 99120L (2016).

2015 (2)

2014 (1)

2013 (1)

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

2012 (2)

N. Kuse, A. Ozawa, Y. Nomura, I. Ito, and Y. Kobayashi, “Injection locking of Yb-fiber based optical frequency comb,” Opt. Express 20(10), 10509–10518 (2012).
[PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

2010 (1)

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

2009 (2)

Ch. Eisele, A. Y. Nevsky, and S. Schiller, “Laboratory Test of the Isotropy of Light Propagation at the 10(-17) Level,” Phys. Rev. Lett. 103(9), 090401 (2009).
[PubMed]

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

2008 (2)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry- Pérot cavities,” Phys. Rev. A 77, 053809 (2008).

2007 (2)

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15),” Opt. Lett. 32(6), 641–643 (2007).
[PubMed]

2006 (1)

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).

2005 (2)

2004 (1)

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[PubMed]

2001 (1)

C. Hawthorn, K. Weber, and R. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).

1992 (1)

J. Hall, “Frequency Stabilized Laser - a Parochial Review,” Proc. SPIE 1837, 2 (1992).

1983 (1)

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Abe, K.

J. Sugawara, H. Unno, N. Kougi, Y. Kuma, and K. Abe, ““NEXCERA”, Zero Thermal Expansion Ceramics For Optical Applications,” in Proceedings of ASPE 2010 Annual Meeting, 50, 405–407 (2010).

Akamatsu, D.

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

Alnis, J.

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry- Pérot cavities,” Phys. Rev. A 77, 053809 (2008).

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Beha, K.

Blatt, S.

Boyd, M. M.

Camp, J.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[PubMed]

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).

Coillet, A.

Cole, D. C.

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Dekker, H.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Del’Haye, P.

Diddams, S. A.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Eisele, Ch.

Ch. Eisele, A. Y. Nevsky, and S. Schiller, “Laboratory Test of the Isotropy of Light Propagation at the 10(-17) Level,” Phys. Rev. Lett. 103(9), 090401 (2009).
[PubMed]

Endo, M.

Falke, S.

Fischer, M.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Foreman, S. M.

Grebing, C.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[PubMed]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102–5105 (2014).
[PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

Grosche, G.

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

Haensch, T. W.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry- Pérot cavities,” Phys. Rev. A 77, 053809 (2008).

Häfner, S.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[PubMed]

Hagemann, C.

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102–5105 (2014).
[PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

Hall, J.

J. Hall, “Frequency Stabilized Laser - a Parochial Review,” Proc. SPIE 1837, 2 (1992).

Hall, J. L.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).

M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30(14), 1815–1817 (2005).
[PubMed]

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Hänsch, T. W.

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Hawthorn, C.

C. Hawthorn, K. Weber, and R. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).

Higashi, R.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[PubMed]

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Hong, F.

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

Hong, F. L.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[PubMed]

Hosaka, K.

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

Hough, J.

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Huang, X.

Inaba, H.

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

Ito, I.

Jentschura, U. D.

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

Katori, H.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[PubMed]

Kemery, A.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[PubMed]

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

Kobayashi, Y.

Kolachevsky, N.

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry- Pérot cavities,” Phys. Rev. A 77, 053809 (2008).

Kougi, N.

J. Sugawara, H. Unno, N. Kougi, Y. Kuma, and K. Abe, ““NEXCERA”, Zero Thermal Expansion Ceramics For Optical Applications,” in Proceedings of ASPE 2010 Annual Meeting, 50, 405–407 (2010).

Kowalsky, F. W.

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Kuma, Y.

J. Sugawara, H. Unno, N. Kougi, Y. Kuma, and K. Abe, ““NEXCERA”, Zero Thermal Expansion Ceramics For Optical Applications,” in Proceedings of ASPE 2010 Annual Meeting, 50, 405–407 (2010).

Kuse, N.

Legero, T.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[PubMed]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102–5105 (2014).
[PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

Li, T.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).

Lisdat, C.

Ludlow, A. D.

Ma, L. S.

Maloney, C.

J. Sugawara and C. Maloney, “Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF),” Proc. SPIE 9912, 99120L (2016).

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Martin, M. J.

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102–5105 (2014).
[PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

Matei, D. G.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

Matveev, A.

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry- Pérot cavities,” Phys. Rev. A 77, 053809 (2008).

Merimaa, M.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Nevsky, A. Y.

Ch. Eisele, A. Y. Nevsky, and S. Schiller, “Laboratory Test of the Isotropy of Light Propagation at the 10(-17) Level,” Phys. Rev. Lett. 103(9), 090401 (2009).
[PubMed]

Nomura, Y.

Notcutt, M.

Numata, K.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[PubMed]

Onae, A.

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

Ozawa, A.

Papp, S. B.

Parthey, C. G.

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Pohl, R.

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

Riehle, F.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102–5105 (2014).
[PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

Robinson, J. M.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

Schiller, S.

Ch. Eisele, A. Y. Nevsky, and S. Schiller, “Laboratory Test of the Isotropy of Light Propagation at the 10(-17) Level,” Phys. Rev. Lett. 103(9), 090401 (2009).
[PubMed]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

Schnatz, H.

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

Scholten, R.

C. Hawthorn, K. Weber, and R. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).

Sizmann, A.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Sonderhouse, L.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

Sterr, U.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[PubMed]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102–5105 (2014).
[PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

Sugawara, J.

J. Sugawara and C. Maloney, “Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF),” Proc. SPIE 9912, 99120L (2016).

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

J. Sugawara, H. Unno, N. Kougi, Y. Kuma, and K. Abe, ““NEXCERA”, Zero Thermal Expansion Ceramics For Optical Applications,” in Proceedings of ASPE 2010 Annual Meeting, 50, 405–407 (2010).

Takamoto, M.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[PubMed]

Terra, O.

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

Udem, T.

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry- Pérot cavities,” Phys. Rev. A 77, 053809 (2008).

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Unno, H.

J. Sugawara, H. Unno, N. Kougi, Y. Kuma, and K. Abe, ““NEXCERA”, Zero Thermal Expansion Ceramics For Optical Applications,” in Proceedings of ASPE 2010 Annual Meeting, 50, 405–407 (2010).

Vogt, S.

Ward, H.

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Weber, K.

C. Hawthorn, K. Weber, and R. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).

Weyrich, R.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

Yang, T.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).

Yasuda, M.

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

Ye, J.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102–5105 (2014).
[PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15),” Opt. Lett. 32(6), 641–643 (2007).
[PubMed]

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).

M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30(14), 1815–1817 (2005).
[PubMed]

Zang, E.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).

Zanon-Willette, T.

Zhang, W.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

Appl. Phys., B Photophys. Laser Chem. (1)

R. W. P. Drever, J. L. Hall, F. W. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical-Resonator,” Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983).

Jpn. J. Appl. Phys. (1)

K. Hosaka, H. Inaba, D. Akamatsu, M. Yasuda, J. Sugawara, A. Onae, and F. Hong, “A Fabry- Pérot Etalon with an Ultralow Expansion Ceramic Spacer,” Jpn. J. Appl. Phys. 52, 032402 (2013).

Mon. Not. R. Astron. Soc. (1)

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).

Nat. Photonics (1)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).

Nature (1)

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[PubMed]

Opt. Express (2)

Opt. Lett. (4)

Optica (1)

Phys. Rev. A (2)

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry- Pérot cavities,” Phys. Rev. A 77, 053809 (2008).

Phys. Rev. Lett. (4)

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[PubMed]

Ch. Eisele, A. Y. Nevsky, and S. Schiller, “Laboratory Test of the Isotropy of Light Propagation at the 10(-17) Level,” Phys. Rev. Lett. 103(9), 090401 (2009).
[PubMed]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[PubMed]

C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura, N. Kolachevsky, and T. W. Hänsch, “Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift,” Phys. Rev. Lett. 104(23), 233001 (2010).
[PubMed]

Proc. SPIE (3)

U. Sterr, T. Legero, T. Kessler, H. Schnatz, G. Grosche, O. Terra, and F. Riehle, “Ultrastable lasers - new developments and applications,” Proc. SPIE 7431, 74310A (2009).

J. Hall, “Frequency Stabilized Laser - a Parochial Review,” Proc. SPIE 1837, 2 (1992).

J. Sugawara and C. Maloney, “Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF),” Proc. SPIE 9912, 99120L (2016).

Rev. Sci. Instrum. (1)

C. Hawthorn, K. Weber, and R. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[PubMed]

Other (3)

T. Kamiya, J. Sugawara, T. Mizutani, S. Yasuda, and K. Kitamoto, “EARLY STUDY ON THE APPLICATION OF NEXCERA ULTRA LOW THERMAL EXPANSION CERAMIC TO SPACE TELESCOPES,” in Proceedings of ICSO 2016, http://esaconferencebureau.com/custom/icso/2016/fullpaper/FP_IC_034.pdf .

J. Sugawara, H. Unno, N. Kougi, Y. Kuma, and K. Abe, ““NEXCERA”, Zero Thermal Expansion Ceramics For Optical Applications,” in Proceedings of ASPE 2010 Annual Meeting, 50, 405–407 (2010).

H. Unno, S. Toh, J. Sugawara, K. Hattori, S. Uehara, and S. Matsumura, “Microstructure of La-doped low thermal expansion cordierite ceramics,” in Proceedings of 36th International Conference on Advanced Ceramics and Composites, ICACC-S1–037 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the CW laser stabilized to the ceramic cavity, ECDL: External cavity diode laser, OI: Optical isolator, PZT: Piezoelectric transducer, PMF: Polarization maintaining fiber, HWP: Half wavelength plate, QWP: Quarter wavelength plate, EOM: Electro-optic modulator, APD: Avalanche photodiode, PDH: Pound-Drever-Hall method, PID: Proportional, Integral, Differential.

Fig. 2
Fig. 2

Determination of the zero crossing temperature and the coefficients of thermal expansion of the ceramic and the ULE cavities. (a) Temperature dependence of the beat note frequency shift. T0 corresponds to the zero crossing temperature. (b) Coefficients of thermal expansion of the ceramic and the ULE cavities. Coefficients of thermal expansion are obtained from the derivative of the parabolic curve fits in (a). The horizontal axis shows the temperature difference from T0.

Fig. 3
Fig. 3

(a) The power spectrum density of the beat note measured with a RF spectrum analyzer (HP, 89440A) at a resolution bandwidth of 0.5Hz. (b) The Allan deviation of beat note calculated from data measured with a frequency counter (Agilent 53230A) at a gate time of 50 ms over 1100 s. A linear frequency drift was subtracted from this data.

Fig. 4
Fig. 4

The absolute frequency drift of the CW lasers stabilized the ceramic cavity (Red) and ULE cavity (Blue) over one year. The absolute frequency was measured with a frequency counter set to a 1 s gate time and each data point was averaged over a time τ = 180 s. The measurement error bars are of the order of kHz/τ1/2, which is smaller than the data points themselves.

Fig. 5
Fig. 5

The absolute frequency drift rates of the ceramic cavity (red) and the ULE cavity (blue). They were deduced from the time differential of the exponential fits of Fig. 4. The solid lines are the time differentials and the dotted lines are extrapolations.

Fig. 6
Fig. 6

The difference between the two absolute frequencies of the CW lasers measured via the frequency comb (orange triangle) and the direct beat note frequency generated between the two CW lasers (Green square). The solid line shows an exponential function fitted to the direct beat frequency data and the inset shows the absolute frequency drift rate obtained from the time differential of this fit.

Metrics