Abstract

A waveguide-mode sensor with a planar sensing chip, consisting of two waveguiding layers and a glass substrate, is a promising candidate for a near-field illumination biosensor. Aiming at using fluorescent labeling induced by ultraviolet light, we optimize the structure of a waveguide-mode sensing chip, based on the mechanism for enhancing ultraviolet near-field light revealed by numerical calculations. Candidates of optimal materials are also presented. The chip optimized as above should be able to enhance the intensity of ultraviolet near-field light 25 times as high as an Al surface plasmon resonance sensing chip.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of a TiO2/SiO2 waveguide-mode chip for an ultraviolet near-field fluorescence sensor

Chiaki Kuroda, Midori Nakai, Makoto Fujimaki, and Yoshimichi Ohki
Opt. Express 26(6) 6796-6805 (2018)

Measurement of the enhanced evanescent fields of integrated waveguides for optical near-field sensing

Julia Hahn, Christian E. Rüter, Frank Fecher, Jürgen Petter, Detlef Kip, and Theo Tschudi
Appl. Opt. 47(13) 2357-2360 (2008)

Evanescent-field-coupled guided-mode sensor based on a waveguide grating

Dmitry V. Nesterenko, Shinji Hayashi, and Zouheir Sekkat
Appl. Opt. 54(15) 4889-4894 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
    [PubMed]
  2. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
    [PubMed]
  3. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
    [PubMed]
  4. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Phys. Chem. Eng. Asp. 171, 115–130 (2000).
  5. K. Tawa and K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89(4), 2750–2758 (2005).
    [PubMed]
  6. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
    [PubMed]
  7. C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
    [PubMed]
  8. R.-Y. He, G.-L. Chang, H.-L. Wu, C.-H. Lin, K.-C. Chiu, Y.-D. Su, and S.-J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006).
    [PubMed]
  9. R.-Y. He, C.-Y. Lin, Y.-D. Su, K.-C. Chiu, N.-S. Chang, H.-L. Wu, and S.-J. Chen, “Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy,” Opt. Express 18(4), 3649–3659 (2010).
    [PubMed]
  10. V. Chabot, Y. Miron, P. G. Charette, and M. Grandbois, “Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy,” Biosens. Bioelectron. 50(15), 125–131 (2013).
    [PubMed]
  11. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [PubMed]
  12. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76(8), 2210–2219 (2004).
    [PubMed]
  13. E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
    [PubMed]
  14. I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
    [PubMed]
  15. A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
    [PubMed]
  16. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
    [PubMed]
  17. K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
  18. X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
    [PubMed]
  19. M. Fujimaki, X. Wang, T. Kato, K. Awazu, and Y. Ohki, “Parallel-incidence-type waveguide-mode sensor with spectral-readout setup,” Opt. Express 23(9), 10925–10937 (2015).
    [PubMed]
  20. M. Yasuura and M. Fujimaki, “Detection of extremely low concentrations of biological substances using near-field illumination,” Sci. Rep. 6, 39241 (2016).
    [PubMed]
  21. C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56, 037201 (2017).
  22. M. Born and E. Wolf, Principles of optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Sixth Edition (Cambridge University, 1997).
  23. O. Arnon and P. Baumeister, “Electric field distribution and the reduction of laser damage in multilayers,” Appl. Opt. 19(11), 1853–1855 (1980).
    [PubMed]
  24. Y. Kokubun, Optical-wave Engineering (Kyoritsu, 1999) [in Japanese].
  25. E. Palik, G. Ghosh, and T. M. Cotter, Handbook of Optical Constants of Solids (Academic, 1998).
  26. M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).
  27. X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).
  28. G. E. Jellison., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1(1), 41–47 (1992).
  29. A. G. C. Asahi Glass, “Optical properties of amorphous fluororesin,” [in Japanese], http://www.agc.com/kagaku/shinsei/cytop/optical.html .
  30. Schott, “Datasheet of N-BK 7,” http://www.schott.com/advanced_optics/japanese/abbe_datasheets/schott-datasheet-n-bk7.pdf .
  31. M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
    [PubMed]
  32. Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
  33. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
    [PubMed]

2017 (1)

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56, 037201 (2017).

2016 (1)

M. Yasuura and M. Fujimaki, “Detection of extremely low concentrations of biological substances using near-field illumination,” Sci. Rep. 6, 39241 (2016).
[PubMed]

2015 (1)

2014 (1)

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).

2013 (3)

A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
[PubMed]

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).

V. Chabot, Y. Miron, P. G. Charette, and M. Grandbois, “Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy,” Biosens. Bioelectron. 50(15), 125–131 (2013).
[PubMed]

2011 (1)

2010 (2)

R.-Y. He, C.-Y. Lin, Y.-D. Su, K.-C. Chiu, N.-S. Chang, H.-L. Wu, and S.-J. Chen, “Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy,” Opt. Express 18(4), 3649–3659 (2010).
[PubMed]

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[PubMed]

2009 (1)

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[PubMed]

2008 (3)

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
[PubMed]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[PubMed]

2007 (2)

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[PubMed]

2006 (1)

2005 (1)

K. Tawa and K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89(4), 2750–2758 (2005).
[PubMed]

2004 (2)

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76(8), 2210–2219 (2004).
[PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[PubMed]

2002 (1)

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

2001 (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[PubMed]

2000 (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Phys. Chem. Eng. Asp. 171, 115–130 (2000).

1999 (1)

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).

1997 (1)

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[PubMed]

1992 (1)

G. E. Jellison., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1(1), 41–47 (1992).

1981 (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[PubMed]

1980 (1)

Akimoto, R.

Arnon, O.

Ashiba, H.

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56, 037201 (2017).

Awazu, K.

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[PubMed]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[PubMed]

Baumeister, P.

Bruno, G.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Capezzuto, P.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[PubMed]

Chabot, V.

V. Chabot, Y. Miron, P. G. Charette, and M. Grandbois, “Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy,” Biosens. Bioelectron. 50(15), 125–131 (2013).
[PubMed]

Chang, G.-L.

Chang, N.-S.

Charette, P. G.

V. Chabot, Y. Miron, P. G. Charette, and M. Grandbois, “Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy,” Biosens. Bioelectron. 50(15), 125–131 (2013).
[PubMed]

Chen, S.-J.

Chiu, K.-C.

Chowdhury, M. H.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[PubMed]

Cordelières, F. P.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Dostalek, J.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[PubMed]

Dostálek, J.

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[PubMed]

Ekgasit, S.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76(8), 2210–2219 (2004).
[PubMed]

Fontaine-Aupart, M.-P.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Fort, E.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Fujimaki, M.

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56, 037201 (2017).

M. Yasuura and M. Fujimaki, “Detection of extremely low concentrations of biological substances using near-field illumination,” Sci. Rep. 6, 39241 (2016).
[PubMed]

M. Fujimaki, X. Wang, T. Kato, K. Awazu, and Y. Ohki, “Parallel-incidence-type waveguide-mode sensor with spectral-readout setup,” Opt. Express 23(9), 10925–10937 (2015).
[PubMed]

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
[PubMed]

Fukuda, N.

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).

Giangregorio, M.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[PubMed]

Grandbois, M.

V. Chabot, Y. Miron, P. G. Charette, and M. Grandbois, “Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy,” Biosens. Bioelectron. 50(15), 125–131 (2013).
[PubMed]

Gray, S. K.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[PubMed]

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[PubMed]

Gryczynski, Z.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[PubMed]

He, R.-Y.

Honda, M.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).

Huang, C. J.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[PubMed]

Inami, W.

Iwane, A. H.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[PubMed]

Jellison, G. E.

G. E. Jellison., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1(1), 41–47 (1992).

Kato, T.

Kawata, S.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).

Kawata, Y.

Kikawada, M.

Kitamura, K.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[PubMed]

Knoll, W.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[PubMed]

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76(8), 2210–2219 (2004).
[PubMed]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Phys. Chem. Eng. Asp. 171, 115–130 (2000).

Koganezawa, Y.

Komatsubara, T.

Kumamoto, Y.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).

Kuroda, C.

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56, 037201 (2017).

Kwok, H. S.

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).

Lakowicz, J. R.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[PubMed]

Lakshmipriya, T.

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).

Lévêque-Fort, S.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Phys. Chem. Eng. Asp. 171, 115–130 (2000).

Lin, C.-H.

Lin, C.-Y.

Losurdo, M.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Makishima, M.

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56, 037201 (2017).

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[PubMed]

Miron, Y.

V. Chabot, Y. Miron, P. G. Charette, and M. Grandbois, “Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy,” Biosens. Bioelectron. 50(15), 125–131 (2013).
[PubMed]

Moal, E. L.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Morigaki, K.

K. Tawa and K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89(4), 2750–2758 (2005).
[PubMed]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[PubMed]

Nomura, K.

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[PubMed]

Nowaczyk, K.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[PubMed]

Ohki, Y.

Ono, A.

Plá, J.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Pond, J.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[PubMed]

Ray, K.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[PubMed]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[PubMed]

Ricolleau, C.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Rizzoli, R.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Roca, F.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Rockstuhl, C.

Rosa, R. D.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Saito, K.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[PubMed]

Saito, Y.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).

Su, Y.-D.

Summonte, C.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Sun, X. W.

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).

Taguchi, A.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).

Tawa, K.

K. Tawa and K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89(4), 2750–2758 (2005).
[PubMed]

Thammacharoen, C.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76(8), 2210–2219 (2004).
[PubMed]

Tokunaga, M.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[PubMed]

Tominaga, J.

Wang, X.

Watanabe, K.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).

Wu, H.-L.

Yanagida, T.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[PubMed]

Yasuura, M.

M. Yasuura and M. Fujimaki, “Detection of extremely low concentrations of biological substances using near-field illumination,” Sci. Rep. 6, 39241 (2016).
[PubMed]

Yu, F.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76(8), 2210–2219 (2004).
[PubMed]

ACS Photonics (1)

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).

Anal. Chem. (4)

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[PubMed]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[PubMed]

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76(8), 2210–2219 (2004).
[PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[PubMed]

Appl. Opt. (1)

Biochem. Biophys. Res. Commun. (1)

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[PubMed]

Biointerphases (1)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[PubMed]

Biophys. J. (2)

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

K. Tawa and K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89(4), 2750–2758 (2005).
[PubMed]

Biosens. Bioelectron. (2)

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[PubMed]

V. Chabot, Y. Miron, P. G. Charette, and M. Grandbois, “Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy,” Biosens. Bioelectron. 50(15), 125–131 (2013).
[PubMed]

J. Appl. Phys. (2)

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).

J. Cell Biol. (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[PubMed]

J. Vac. Sci. Technol. (1)

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. D. Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. 20(1), 37–42 (2002).

Jpn. J. Appl. Phys. (1)

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56, 037201 (2017).

Nat. Methods (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[PubMed]

Opt. Express (6)

Opt. Mater. (1)

G. E. Jellison., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1(1), 41–47 (1992).

Phys. Chem. Eng. Asp. (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Phys. Chem. Eng. Asp. 171, 115–130 (2000).

Sci. Rep. (1)

M. Yasuura and M. Fujimaki, “Detection of extremely low concentrations of biological substances using near-field illumination,” Sci. Rep. 6, 39241 (2016).
[PubMed]

Traffic (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[PubMed]

Other (5)

M. Born and E. Wolf, Principles of optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Sixth Edition (Cambridge University, 1997).

Y. Kokubun, Optical-wave Engineering (Kyoritsu, 1999) [in Japanese].

E. Palik, G. Ghosh, and T. M. Cotter, Handbook of Optical Constants of Solids (Academic, 1998).

A. G. C. Asahi Glass, “Optical properties of amorphous fluororesin,” [in Japanese], http://www.agc.com/kagaku/shinsei/cytop/optical.html .

Schott, “Datasheet of N-BK 7,” http://www.schott.com/advanced_optics/japanese/abbe_datasheets/schott-datasheet-n-bk7.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical arrangement of a WM sensor in the Kretschmann configuration (not to scale).
Fig. 2
Fig. 2 Schematic views of the cross-sectional structure of the WM sensing chip. The directions of the light reflection and transmission (a) and the change in value of N(z) in the chip when θ = θc (b) or θ > θc (c), θc: critical angle of total reflection (not to scale). ns, n1, n2, and nb denote the complex refractive indices of the substrate, the layer 1, the layer 2, and the buffer, respectively. Yellow areas in (b) and (c) are conceptual images of near-field light.
Fig. 3
Fig. 3 Change in value of N(z) in the WM sensing chip when the real part of n1 is higher than those of ns and n2. Yellow area is a conceptual image of near-field light.
Fig. 4
Fig. 4 (a) Calculation results of NM(0) as a function of n1 and k1. White squares stand for the values of ITO (i), diamond (ii), SiC (iii), TiO2 (iv), ZnO (v), and Si (vi). The layer 2 is assumed to be SiO2. (b) Values of NM(0) for the candidates (i) – (vi). Numerals in parentheses are the optimized thicknesses d1 [nm] that yield these values of NM(0).
Fig. 5
Fig. 5 (a) Calculation results of NM(0) as a function of n2 and k2 and for MgF2 (vii), CaF (viii), SiO2 (ix), PMMA (x), and BK7 (xi). The layer 1 is assumed to be TiO2. (b) Values of NM(0) and the corresponding optimized values of d2 [nm] in parentheses.
Fig. 6
Fig. 6 Normalized electric field strength squared N(z) in the WM sensing chip composed of the 28-nm TiO2 layer and the 315-nm MgF2 layer as a function of distance z from the interface between the MgF2 layer and the water. The interfaces between the substrate and the TiO2 layer, the TiO2 layer and the MgF2 layer, and the MgF2 layer and the water are indicated by the broken blue line, the dotted orange line, and the solid black line, respectively. The position where the light is totally reflected is shown by the broken black line.
Fig. 7
Fig. 7 N(0), calculated as a function of thicknesses of the TiO2 layer and the MgF2 layer.
Fig. 8
Fig. 8 Calculation results of NspM(0) (solid red) obtainable for the Al SPR sensing chip and the incident angle to the Al layer θsp (broken blue) as a function of dAl.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

N(z)= | E(z) E 0 | 2 ,
n s sin θ in = n 1 sin θ 1 = n 2 sin θ 2 ,
θ 2 sin 1 ( n b n 2 )= θ c ,
R= ( sin( θ 2 θ b ) sin( θ 2 + θ b ) ) 2 =exp(j2Φ),
Φ=2 tan 1 [ ( n 2 sin θ 2 ) 2 n b 2 n 2 cos θ 2 ],
δ= λ( πΦ ) 4π n 2 cos θ 2 .
d 1 = ( m 1 + 1 2 )λ 2 n 1 cos θ 1 ,
D= d 2 +δ,
D= m 2 λ 2 n 2 cos θ 2 ,
d 1 = λ 4 n 1 cos θ 1 ,
D= λ 2 n 2 cos θ 2 .

Metrics