Abstract

Non-reciprocal and uni-directional transport could efficiently transmit signals in integrated quantum and optical networks. It is shown that the time-dependent modulation of the position of quantum nodes would efficiently and non-reciprocally guide an initially injected quantum energy. Moreover, the initial energy could be trapped within a ring configuration of such dynamically controlled quantum nodes. It is also shown that parallel waveguide arrays with specific widths pattern could uni-directly transfer a Gaussian beam across the arrays. By arranging the parallel waveguides on a cylindrical shell with a new widths pattern, the chiral transport of an incident Gaussian beam is also achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional non-reciprocal transmission in dynamically modulated photonic lattices

Shasha Li, Yang Lu, Kun Han, Jiachen Liu, Shuchao Lü, Pingan Gao, Xuanqi Feng, Jintao Bai, and Xinyuan Qi
Opt. Lett. 41(22) 5242-5245 (2016)

Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform

Paolo Pintus, Fabrizio Di Pasquale, and John E. Bowers
Opt. Express 21(4) 5041-5052 (2013)

Manipulating electromagnetic wave propagating non-reciprocally by a chain of ferrite rods

Cheng Ju, Rui-Xin Wu, Zhen Li, Yin Poo, Shi-Yang Liu, and Zhi-Fang Lin
Opt. Express 25(18) 22096-22103 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
    [Crossref]
  2. V. V. Konotop and V. Kuzmiak, “Nonreciprocal frequency doubler of electromagnetic waves based on a photonic crystal,” Phys. Rev. B,  66, 235208 (2002).
    [Crossref]
  3. J. Ren and J. X. Zhu, “Theory of asymmetric and negative differential magnon tunneling under temperature bias: Towards a spin Seebeck diode and transistor,” Phys. Rev. B 88, 094427 (2013).
    [Crossref]
  4. J. Ren, “Predicted rectification and negative differential spin Seebeck effect at magnetic interfaces,” Phys. Rev. B, PRB 88, 220406 (2013).
    [Crossref]
  5. S. S. Mathur and M. S. Sagoo, “Rectification of acoustic waves,” Can. J. Phys.,  52(17), 1726–1730 (1974).
  6. B. Liang, B. Yuan, and J. C. Cheng, “Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems,” Phys. Rev. Lett. 103, 104301 (2009).
    [Crossref] [PubMed]
  7. S. Longhi, “Non-reciprocal transmission in photonic lattices based on unidirectional coherent perfect absorption,” Opt. Lett.,  40(7), 1278–1281 (2015).
    [Crossref] [PubMed]
  8. N. Li and J. Ren, “Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials,” Sci. Rep.,  4, 6228 (2014).
    [Crossref] [PubMed]
  9. Y. Shen, M. Bradford, and J. T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
    [Crossref] [PubMed]
  10. K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
    [Crossref]
  11. L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nature Photon. 8(9), 701–705 (2014).
    [Crossref]
  12. K. Fang, Z. Yu, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
    [Crossref] [PubMed]
  13. W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Express,  35(4), 568–570 (2010).
  14. M. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express,  19(12), 11740–11745 (2011).
    [Crossref] [PubMed]
  15. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
    [Crossref]
  16. Z. Yu and S. Fan, “Optical isolation: A non-magnetic approach,” Nature. Photon. 5, 517–519 (2011).
    [Crossref]
  17. L. Yuan, S. Xu, and S. Fan, “Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov Bohm effect,” Opt. Lett. 40(22), 5140 (2015).
    [Crossref] [PubMed]
  18. E. Lenferink, G. Wei, and N. P. Stern, “Coherent optical non-reciprocity in axisymmetric resonators,” Opt. Express 22(13), 16099–16111 (2014).
    [Crossref] [PubMed]
  19. S. Longhi, “Aharonov-Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields,” Opt. Lett. 39(20), 5892 (2014).
    [Crossref] [PubMed]
  20. S. Longhi, “Effective magnetic fields for photons in waveguide and coupled resonator lattices,” Opt. Lett. 38(18), 3570–3573 (2013).
    [Crossref] [PubMed]
  21. C. Monroe and J. Kim, “Scaling the Ion Trap Quantum Processor,” Science 339, 1164–1169 (2013).
    [Crossref] [PubMed]
  22. A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
    [Crossref]
  23. J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, “Lattice of double wells for manipulating pairs of cold atoms,” Phys. Rev. A 73, 033605 (2006).
    [Crossref]
  24. M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W. D. Phillips, “Controlled atom dynamics in a double-well optical lattice,” J. Phys. B: At. Mol. Opt. Phys. 39, S199–S210 (2006).
    [Crossref]
  25. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
    [Crossref] [PubMed]
  26. G. D. Marshall, A. Politi, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
    [Crossref] [PubMed]
  27. J. Poulin, P. S. Light, R. Kashyap, and A. N. Luiten, “Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel,” Phys. Rev. A 84, 053812 (2011).
    [Crossref]
  28. T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, “Dynamics of Bloch oscillations,” New J. Phys. 6, 2 (2004).
    [Crossref]
  29. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
    [Crossref]
  30. P. D. McIntyre and A. W. Snyder, “Power transfer between optical fibers,” J. Opt. Soc. Am. 63(12), 1518–1527 (1973).
    [Crossref]

2015 (3)

2014 (5)

E. Lenferink, G. Wei, and N. P. Stern, “Coherent optical non-reciprocity in axisymmetric resonators,” Opt. Express 22(13), 16099–16111 (2014).
[Crossref] [PubMed]

S. Longhi, “Aharonov-Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields,” Opt. Lett. 39(20), 5892 (2014).
[Crossref] [PubMed]

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nature Photon. 8(9), 701–705 (2014).
[Crossref]

N. Li and J. Ren, “Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials,” Sci. Rep.,  4, 6228 (2014).
[Crossref] [PubMed]

2013 (5)

C. Monroe and J. Kim, “Scaling the Ion Trap Quantum Processor,” Science 339, 1164–1169 (2013).
[Crossref] [PubMed]

A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
[Crossref]

J. Ren and J. X. Zhu, “Theory of asymmetric and negative differential magnon tunneling under temperature bias: Towards a spin Seebeck diode and transistor,” Phys. Rev. B 88, 094427 (2013).
[Crossref]

J. Ren, “Predicted rectification and negative differential spin Seebeck effect at magnetic interfaces,” Phys. Rev. B, PRB 88, 220406 (2013).
[Crossref]

S. Longhi, “Effective magnetic fields for photons in waveguide and coupled resonator lattices,” Opt. Lett. 38(18), 3570–3573 (2013).
[Crossref] [PubMed]

2012 (1)

K. Fang, Z. Yu, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref] [PubMed]

2011 (5)

Y. Shen, M. Bradford, and J. T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Z. Yu and S. Fan, “Optical isolation: A non-magnetic approach,” Nature. Photon. 5, 517–519 (2011).
[Crossref]

M. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express,  19(12), 11740–11745 (2011).
[Crossref] [PubMed]

J. Poulin, P. S. Light, R. Kashyap, and A. N. Luiten, “Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel,” Phys. Rev. A 84, 053812 (2011).
[Crossref]

2010 (1)

W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Express,  35(4), 568–570 (2010).

2009 (2)

2006 (2)

J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, “Lattice of double wells for manipulating pairs of cold atoms,” Phys. Rev. A 73, 033605 (2006).
[Crossref]

M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W. D. Phillips, “Controlled atom dynamics in a double-well optical lattice,” J. Phys. B: At. Mol. Opt. Phys. 39, S199–S210 (2006).
[Crossref]

2004 (1)

T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, “Dynamics of Bloch oscillations,” New J. Phys. 6, 2 (2004).
[Crossref]

2002 (1)

V. V. Konotop and V. Kuzmiak, “Nonreciprocal frequency doubler of electromagnetic waves based on a photonic crystal,” Phys. Rev. B,  66, 235208 (2002).
[Crossref]

1999 (1)

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

1995 (1)

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
[Crossref]

1974 (1)

S. S. Mathur and M. S. Sagoo, “Rectification of acoustic waves,” Can. J. Phys.,  52(17), 1726–1730 (1974).

1973 (1)

Aitchison, J. S.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Anderlini, M.

J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, “Lattice of double wells for manipulating pairs of cold atoms,” Phys. Rev. A 73, 033605 (2006).
[Crossref]

M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W. D. Phillips, “Controlled atom dynamics in a double-well optical lattice,” J. Phys. B: At. Mol. Opt. Phys. 39, S199–S210 (2006).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Bloemer, M. J.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
[Crossref]

Bowden, C. M.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
[Crossref]

Bowers, J. E.

Bradford, M.

Y. Shen, M. Bradford, and J. T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

Cheng, J. C.

B. Liang, B. Yuan, and J. C. Cheng, “Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems,” Phys. Rev. Lett. 103, 104301 (2009).
[Crossref] [PubMed]

Cheng, Y.

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

Coy, S. L.

A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
[Crossref]

Dagens, B.

W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Express,  35(4), 568–570 (2010).

Dierolf, V.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Dowling, J. P.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
[Crossref]

Eisenberg, H. S.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Fan, S.

L. Yuan, S. Xu, and S. Fan, “Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov Bohm effect,” Opt. Lett. 40(22), 5140 (2015).
[Crossref] [PubMed]

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nature Photon. 8(9), 701–705 (2014).
[Crossref]

K. Fang, Z. Yu, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Optical isolation: A non-magnetic approach,” Nature. Photon. 5, 517–519 (2011).
[Crossref]

Fang, K.

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nature Photon. 8(9), 701–705 (2014).
[Crossref]

K. Fang, Z. Yu, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref] [PubMed]

Glick, J.

A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
[Crossref]

Gong, S.

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

Gralak, B.

W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Express,  35(4), 568–570 (2010).

Hall, A. B.

A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
[Crossref]

Hartmann, T.

T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, “Dynamics of Bloch oscillations,” New J. Phys. 6, 2 (2004).
[Crossref]

Hirao, K.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Jain, H.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

Jessen, P. S.

J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, “Lattice of double wells for manipulating pairs of cold atoms,” Phys. Rev. A 73, 033605 (2006).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Kafle, A.

A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
[Crossref]

Kashyap, R.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

J. Poulin, P. S. Light, R. Kashyap, and A. N. Luiten, “Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel,” Phys. Rev. A 84, 053812 (2011).
[Crossref]

G. D. Marshall, A. Politi, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

Keck, F.

T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, “Dynamics of Bloch oscillations,” New J. Phys. 6, 2 (2004).
[Crossref]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Kim, J.

C. Monroe and J. Kim, “Scaling the Ion Trap Quantum Processor,” Science 339, 1164–1169 (2013).
[Crossref] [PubMed]

Kimerlin, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Konotop, V. V.

V. V. Konotop and V. Kuzmiak, “Nonreciprocal frequency doubler of electromagnetic waves based on a photonic crystal,” Phys. Rev. B,  66, 235208 (2002).
[Crossref]

Korsch, H. J.

T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, “Dynamics of Bloch oscillations,” New J. Phys. 6, 2 (2004).
[Crossref]

Kromer, H.

Kruse, J.

M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W. D. Phillips, “Controlled atom dynamics in a double-well optical lattice,” J. Phys. B: At. Mol. Opt. Phys. 39, S199–S210 (2006).
[Crossref]

Kuzmiak, V.

V. V. Konotop and V. Kuzmiak, “Nonreciprocal frequency doubler of electromagnetic waves based on a photonic crystal,” Phys. Rev. B,  66, 235208 (2002).
[Crossref]

Lapointe, J.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

Lenferink, E.

Li, N.

N. Li and J. Ren, “Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials,” Sci. Rep.,  4, 6228 (2014).
[Crossref] [PubMed]

Liang, B.

B. Liang, B. Yuan, and J. C. Cheng, “Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems,” Phys. Rev. Lett. 103, 104301 (2009).
[Crossref] [PubMed]

Light, P. S.

J. Poulin, P. S. Light, R. Kashyap, and A. N. Luiten, “Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel,” Phys. Rev. A 84, 053812 (2011).
[Crossref]

Lin, G.

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

Lipson, M.

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nature Photon. 8(9), 701–705 (2014).
[Crossref]

Longhi, S.

Lu, G.

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

Luiten, A. N.

J. Poulin, P. S. Light, R. Kashyap, and A. N. Luiten, “Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel,” Phys. Rev. A 84, 053812 (2011).
[Crossref]

Magdenko, L.

W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Express,  35(4), 568–570 (2010).

Marshall, G. D.

Mathur, S. S.

S. S. Mathur and M. S. Sagoo, “Rectification of acoustic waves,” Can. J. Phys.,  52(17), 1726–1730 (1974).

McIntyre, P. D.

Miura, K.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

Mizumoto, T.

Monroe, C.

C. Monroe and J. Kim, “Scaling the Ion Trap Quantum Processor,” Science 339, 1164–1169 (2013).
[Crossref] [PubMed]

Morandotti, R.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Mossmann, S.

T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, “Dynamics of Bloch oscillations,” New J. Phys. 6, 2 (2004).
[Crossref]

Nazarov, E.

A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
[Crossref]

Niu, Y.

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

Nussenzveig, P.

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nature Photon. 8(9), 701–705 (2014).
[Crossref]

Peschel, U.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Phillips, W. D.

M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W. D. Phillips, “Controlled atom dynamics in a double-well optical lattice,” J. Phys. B: At. Mol. Opt. Phys. 39, S199–S210 (2006).
[Crossref]

Pintus, P.

Politi, A.

Porto, J. V.

M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W. D. Phillips, “Controlled atom dynamics in a double-well optical lattice,” J. Phys. B: At. Mol. Opt. Phys. 39, S199–S210 (2006).
[Crossref]

J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, “Lattice of double wells for manipulating pairs of cold atoms,” Phys. Rev. A 73, 033605 (2006).
[Crossref]

Poulin, J.

J. Poulin, P. S. Light, R. Kashyap, and A. N. Luiten, “Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel,” Phys. Rev. A 84, 053812 (2011).
[Crossref]

Ren, J.

N. Li and J. Ren, “Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials,” Sci. Rep.,  4, 6228 (2014).
[Crossref] [PubMed]

J. Ren and J. X. Zhu, “Theory of asymmetric and negative differential magnon tunneling under temperature bias: Towards a spin Seebeck diode and transistor,” Phys. Rev. B 88, 094427 (2013).
[Crossref]

J. Ren, “Predicted rectification and negative differential spin Seebeck effect at magnetic interfaces,” Phys. Rev. B, PRB 88, 220406 (2013).
[Crossref]

Romero-Vivas, J.

W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Express,  35(4), 568–570 (2010).

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Sagoo, M. S.

S. S. Mathur and M. S. Sagoo, “Rectification of acoustic waves,” Can. J. Phys.,  52(17), 1726–1730 (1974).

Sakakura, M.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

Scalora, M.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
[Crossref]

Sebby-Strabley, J.

M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W. D. Phillips, “Controlled atom dynamics in a double-well optical lattice,” J. Phys. B: At. Mol. Opt. Phys. 39, S199–S210 (2006).
[Crossref]

J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, “Lattice of double wells for manipulating pairs of cold atoms,” Phys. Rev. A 73, 033605 (2006).
[Crossref]

Shen, J. T.

Y. Shen, M. Bradford, and J. T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, M. Bradford, and J. T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

Shimotsuma, Y.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

Silberberg, Y.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Smigaj, W.

W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Express,  35(4), 568–570 (2010).

Snyder, A. W.

Stern, N. P.

Stone, A.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

Tien, M.

Tocci, M. D.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
[Crossref]

Twamley, J.

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

Tzuang, L. D.

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nature Photon. 8(9), 701–705 (2014).
[Crossref]

Vanwolleghem, M.

W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Express,  35(4), 568–570 (2010).

Vouros, P.

A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
[Crossref]

Wei, G.

Xia, K.

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

Xu, S.

Yu, Z.

K. Fang, Z. Yu, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref] [PubMed]

K. Fang, Z. Yu, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Optical isolation: A non-magnetic approach,” Nature. Photon. 5, 517–519 (2011).
[Crossref]

Yuan, B.

B. Liang, B. Yuan, and J. C. Cheng, “Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems,” Phys. Rev. Lett. 103, 104301 (2009).
[Crossref] [PubMed]

Yuan, L.

Zhu, J. X.

J. Ren and J. X. Zhu, “Theory of asymmetric and negative differential magnon tunneling under temperature bias: Towards a spin Seebeck diode and transistor,” Phys. Rev. B 88, 094427 (2013).
[Crossref]

Am Soc Mass Spectrom. (1)

A. B. Hall, S. L. Coy, A. Kafle, J. Glick, E. Nazarov, and P. Vouros, “Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration,” Am Soc Mass Spectrom. 24(9), 1428–1436 (2013).
[Crossref]

Appl. Phys. Lett. (1)

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
[Crossref]

Can. J. Phys. (1)

S. S. Mathur and M. S. Sagoo, “Rectification of acoustic waves,” Can. J. Phys.,  52(17), 1726–1730 (1974).

J. Opt. Soc. Am. (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W. D. Phillips, “Controlled atom dynamics in a double-well optical lattice,” J. Phys. B: At. Mol. Opt. Phys. 39, S199–S210 (2006).
[Crossref]

Nature Photon. (1)

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nature Photon. 8(9), 701–705 (2014).
[Crossref]

Nature. Photon. (2)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerlin, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature. Photon.,  5, 758–762 (2011).
[Crossref]

Z. Yu and S. Fan, “Optical isolation: A non-magnetic approach,” Nature. Photon. 5, 517–519 (2011).
[Crossref]

New J. Phys. (1)

T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, “Dynamics of Bloch oscillations,” New J. Phys. 6, 2 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (3)

J. Poulin, P. S. Light, R. Kashyap, and A. N. Luiten, “Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel,” Phys. Rev. A 84, 053812 (2011).
[Crossref]

J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, “Lattice of double wells for manipulating pairs of cold atoms,” Phys. Rev. A 73, 033605 (2006).
[Crossref]

K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90, 043802 (2014).
[Crossref]

Phys. Rev. B (2)

V. V. Konotop and V. Kuzmiak, “Nonreciprocal frequency doubler of electromagnetic waves based on a photonic crystal,” Phys. Rev. B,  66, 235208 (2002).
[Crossref]

J. Ren and J. X. Zhu, “Theory of asymmetric and negative differential magnon tunneling under temperature bias: Towards a spin Seebeck diode and transistor,” Phys. Rev. B 88, 094427 (2013).
[Crossref]

Phys. Rev. B, PRB (1)

J. Ren, “Predicted rectification and negative differential spin Seebeck effect at magnetic interfaces,” Phys. Rev. B, PRB 88, 220406 (2013).
[Crossref]

Phys. Rev. Lett. (4)

Y. Shen, M. Bradford, and J. T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

B. Liang, B. Yuan, and J. C. Cheng, “Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems,” Phys. Rev. Lett. 103, 104301 (2009).
[Crossref] [PubMed]

K. Fang, Z. Yu, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Sci. Rep. (2)

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref] [PubMed]

N. Li and J. Ren, “Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials,” Sci. Rep.,  4, 6228 (2014).
[Crossref] [PubMed]

Science (1)

C. Monroe and J. Kim, “Scaling the Ion Trap Quantum Processor,” Science 339, 1164–1169 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Graph (a) shows an eight-site one-dimensional network which achieves directed energy transport. xi is the position of site i along x axis in time. Graph (b) is an enlargement of graph (a) and shows the pair of sites that are close together. Graph (c) is the dynamic evolution of the excitation initially located at site 1 at t = 0. |ϕi|2 is the probability of finding the energy excitation on site i in time where the variation of the position of all sites in time are depicted in black color. We see that due to the pattern of pairing of the sites leads the excitation to move in a directed fashion to the right.

Fig. 2
Fig. 2

Directed wave transport achieved through a width-patterned array of N = 65 waveguides exposed to a Gaussian beam of ϕ(z = 0) = exp(−(nN/2)2/10). Graph (a) shows the schematic of the proposing width pattern array with waveguides indexed n extended along z axis where zB = 0.0063. The spatial modulation of the propagation constants of waveguides are shown in graph (b) where |βiβi+1| = δβ = 520 m−1. Same couplings of adjacent waveguides of Ji,i+1 = 1240m−1 are considered which could be achived by adjusting the nearest guides separations. Graph (c) represents the numerical simulation of intensity |an|2 on waveguide n along z direction which confirms the uni-directed transport of a Gaussian beam through such width patterned arrays.

Fig. 3
Fig. 3

A non-magnetic optical circulator via a dynamically controlled ring network of nine sites. Graph (a) shows the trajectories of nine sites (Ri; i=1 − 9) in time that are initially located equidistantly on a circle on xy plane centered at the origin. The first site is fixed in time at (x1 = 1, y1 = 0). Graph (b) shows the modulation of angles trajectories (in radian) for each site in time. Graphs (c) and (d) represent the dynamics of the probability of energy excitation initially launched at site 1, through the network in shorter and longer time intervals, respectively. The color scale is the total probability of energy excitaiton (|ψ|2) which varies in time at the location of each site.

Fig. 4
Fig. 4

A non-magnetic optical circulator/retarder made of a cylindrical width-patterned waveguide array. Graph (a) shows the schematic of a width varying waveguide array on a cylindrical shell that yields chiral transport of an incident Gaussian beam. Graph (b) shows the profile of propagation constants as a function of waveguide number n along z direction where n ∈ [1, N = 200], δ β = ( 1 ) z z B / 4 d . F, waveguides separations of d = 2π, effective lateral force of F = 0.005, and the nearest guides’ couplings of Ji,i+1 = Ji+1,i = 0.2485. The numerical solutions of wave amplitudes or the corresponding intensities are shown in graph (c) for a cylindrical waveguide array that is initially launched by a Gaussian beam of ϕ(z = 0) = exp(−(nN/2)2/100). It could be confirmed that the incident Gaussian beam would non-reciprocally propagate across the cylinderical shell. The chiral direction could be inversed via mirroring the β(n, z) pattern with respect to line n = 1. By adjusting network parameters like cylinder length or β(n, z) profile, such networks could deviate a Gassian beam for an arbitrary angle to be used as a non-magnetic optical circulator or an optical retarder.

Metrics