Abstract

We study cryogenic laser operation of an Yb-doped KLu(WO4)2 crystal pumped with a volume Bragg grating (VBG) stabilized diode laser at 981 nm. In the continuous wave laser regime, a maximum output power of 4.31 W is achieved at 80 K with a slope efficiency of 44.0% with respect to the incident pump power. Using a 85% initial transmission Cr:YAG crystal for passive Q-switching, an average output power of 2.11 W is achieved at 100 K for a repetition rate of 19 kHz. The pulse energy, pulse duration and peak power amount to 111 µJ, 231 ns and 0.48 kW, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive Q-switching of the diode pumped Tm3+:KLu(WO4)2 laser near 2-µm with Cr2+:ZnS saturable absorbers

Martha Segura, Martin Kadankov, Xavier Mateos, Maria Cinta Pujol, Joan Josep Carvajal, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Express 20(4) 3394-3400 (2012)

Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber

J. M. Serres, P. Loiko, X. Mateos, V. Jambunathan, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz
Appl. Opt. 55(14) 3757-3763 (2016)

Diode-pumped continuous-wave (Ho,Tm):KLu(WO4)2 laser with >1 W output power

Xavier Mateos, Fabrizio Di Trapani, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Mater. Express 4(11) 2274-2279 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  2. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  3. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  4. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  5. D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
    [Crossref]
  6. J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
    [Crossref]
  7. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [Crossref] [PubMed]
  8. S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010).
    [Crossref] [PubMed]
  9. L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
    [Crossref]
  10. V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
    [Crossref]
  11. V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
    [Crossref]
  12. V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
    [Crossref]
  13. Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
    [Crossref]
  14. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
    [Crossref]
  15. O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, and V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008).
    [Crossref] [PubMed]
  16. M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
    [Crossref]
  17. P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
    [Crossref]
  18. P. Navratil, V. Jambunathan, L. Horackova, A. Lucianetti, and T. Mocek, “Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser,” Proc. SPIE 9726, 97261G (2016).
    [Crossref]

2016 (2)

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

P. Navratil, V. Jambunathan, L. Horackova, A. Lucianetti, and T. Mocek, “Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser,” Proc. SPIE 9726, 97261G (2016).
[Crossref]

2015 (2)

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

2014 (3)

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

2012 (1)

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

2010 (2)

2008 (2)

2007 (2)

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2006 (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

2005 (3)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Aguiló, M.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, and V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Borowiec, M. T.

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Camy, P.

Carvajal, J. J.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Cone, R. L.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Cong, Z. H.

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Courjaud, A.

Díaz, F.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, and V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Doualan, J. L.

Druon, F.

S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010).
[Crossref] [PubMed]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Dubinskii, M.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Equall, R. W.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Fan, T. Y.

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref] [PubMed]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Georges, P.

S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010).
[Crossref] [PubMed]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Grau, J.

Griebner, U.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Gutowska, M. U.

Hein, J.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Horackova, L.

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

P. Navratil, V. Jambunathan, L. Horackova, A. Lucianetti, and T. Mocek, “Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser,” Proc. SPIE 9726, 97261G (2016).
[Crossref]

Jambunathan, V.

P. Navratil, V. Jambunathan, L. Horackova, A. Lucianetti, and T. Mocek, “Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser,” Proc. SPIE 9726, 97261G (2016).
[Crossref]

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

Kadankov, M.

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

Kaluza, M. C.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Korner, J.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Kuleshov, N.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

Li, J.

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Liu, J.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Liu, Z. J.

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Loeser, M.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Loiko, P.

Loiko, P. A.

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

Lucianetti, A.

P. Navratil, V. Jambunathan, L. Horackova, A. Lucianetti, and T. Mocek, “Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser,” Proc. SPIE 9726, 97261G (2016).
[Crossref]

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Massons, J.

Massot, M.

Mateos, X.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Merkle, L. D.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Michael, A.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Mocek, T.

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

P. Navratil, V. Jambunathan, L. Horackova, A. Lucianetti, and T. Mocek, “Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser,” Proc. SPIE 9726, 97261G (2016).
[Crossref]

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Moncorgé, R.

Mottay, E.

Navratil, P.

P. Navratil, V. Jambunathan, L. Horackova, A. Lucianetti, and T. Mocek, “Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser,” Proc. SPIE 9726, 97261G (2016).
[Crossref]

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

Newburgh, G. A.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Papadopoulos, D. N.

Pavlyuk, A. A.

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

Petrov, V.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, and V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Pujol, M. C.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, and V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Qin, Z. G.

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Ricaud, S.

Ripin, D. J.

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref] [PubMed]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Salazar, A.

Schramm, U.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Segura, M.

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

Seifert, R.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Serres, J. M.

Siebold, M.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Sikocinski, P.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Silvestre, O.

Silvestre, Ò.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sun, Y. C.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Szewczyk, A.

Ter-Gabrielyan, N.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Wang, W. T.

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Yu, H. H.

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Yumashev, K.

Yumashev, K. V.

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

Zaldo, C.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

Zapata, L. E.

Zhang, H. J.

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Zhang, X. Y.

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Appl. Phys. B (2)

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

P. A. Loiko, X. Mateos, N. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb –and Tm-doped monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 50, 669–676 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Laser Photonics Rev. (1)

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Laser Phys. Lett. (1)

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-µm Tm:KLu(WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
[Crossref]

Opt. Commun. (1)

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Z. H. Cong, Z. J. Liu, Z. G. Qin, X. Y. Zhang, H. J. Zhang, J. Li, H. H. Yu, and W. T. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (1)

P. Navratil, V. Jambunathan, L. Horackova, A. Lucianetti, and T. Mocek, “Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser,” Proc. SPIE 9726, 97261G (2016).
[Crossref]

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Laser setup: L1, L2 achromatic lenses (150 and 300 mm focal lengths), M1 – concave mirror (radius of curvature = −300 mm), M2 – dichroic mirror, L3 – plano convex lens (150 mm focal length), M3 – plane output coupler.
Fig. 2
Fig. 2 Input-output power characteristics of the CW cryo-cooled Yb:KLuW laser (a) at 100 K for different output coupler transmission and (b) for TOC = 20% varying the sample temperature.
Fig. 3
Fig. 3 (a) Dependence of laser threshold and slope efficiency versus temperature of the cryogenic Yb:KLuW laser (TOC = 20%) and (b) Laser emission wavelength at various temperatures (TOC = 20%); inset: beam profile recorded at 100 K.
Fig. 4
Fig. 4 (a) Yb:KLuW pump absorption versus incident power for diferent crystal temperatures and (b) VBG stabilized 981 nm diode laser emission for various current levels, left and Yb:KLuW optical density at different crystal temperatures, right.
Fig. 5
Fig. 5 Cryogenic Yb:KLuW laser, passively Q-switched by Cr:YAG saturable absorbers with different initial transmissions: (a) Average output power versus incident pump power; (b) Repetition rate and pulse width (FWHM) versus incident pump power.
Fig. 6
Fig. 6 (a) Calculated pulse energy and peak power versus incident pump power of the the cryogenic Yb:KLuW laser with different T0 of the Cr:YAG. (b) Single pulse with temporal width of 231 ns and an oscilloscope trace of the pulse train at an incident pump power of 10.94 W using the T0 = 85% SA.

Tables (1)

Tables Icon

Table 1 Output characteristics of the passively Q-switched cryogenic Yb:KLuW laser with different initial transmission of the Cr:YAG saturable absorber

Metrics