Abstract

Intravenous (IV) procedures are often difficult due to the poor visualization of subcutaneous veins. Because existing vein locators lack the ability to assess depth, and also because mis-punctures and poor vascular access remain problematic, we propose an imaging system that employs diffuse reflectance images at three isosbestic wavelengths to measure both the depth and thickness of subcutaneous veins. This paper describes the proposed system as well as proof-of-principle experimental demonstrations. We initially introduce the working principle and structure of the system. All measurements were based on the Monte Carlo (MC) method and accomplished by referring an optical density (OD) ratio to a multi-layer diffuse reflectance model. Results were all validated by comparative ultrasound measurements. Experimental trials included 11 volunteers who were subjected to both ultrasound measurements and the proposed optical process to validate the system’s applicability. However, the unreliability of the “thickness” measurement of the vein may be due to the fact that the veins have collapsible walls – so excess pressure by the transducer will give a false thickness.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Augmented reality based real-time subcutaneous vein imaging system

Danni Ai, Jian Yang, Jingfan Fan, Yitian Zhao, Xianzheng Song, Jianbing Shen, Ling Shao, and Yongtian Wang
Biomed. Opt. Express 7(7) 2565-2585 (2016)

3D and Multispectral Imaging for Subcutaneous Veins Detection

Vincent C. Paquit, Kenneth W. Tobin, Jeffery R. Price, and Fabrice Mériaudeau
Opt. Express 17(14) 11360-11365 (2009)

Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images

Izumi Nishidate, Yoshihisa Aizu, and Hiromichi Mishina
Opt. Lett. 30(16) 2128-2130 (2005)

References

  • View by:
  • |
  • |
  • |

  1. L. Hadaway, “Development of an infusion alliance,” J. Infus. Nurs. 33(5), 278–290 (2010).
    [Crossref] [PubMed]
  2. O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
    [Crossref] [PubMed]
  3. AccuVein AV300 Vein viewing system,” catalog.kpnfs.com/equipcat/cutsheets2/VEFI200-C.pdf .,”
  4. Vein locator BS2000 +, ” http://img.tjskl.org.cn/nimg/41/6a/8b7a318853ec0c2f678efa44408b-98x98–1/vein_viewing_medical_light_doctor_costume_accessories_use_safe_light_source_no_laser.jpg .,”.
  5. Veinlite, “ http://www.veinlite.com/purchasing-agents/#.U7vQqfldWmE .
  6. N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
    [Crossref] [PubMed]
  7. Luminetx Vein Viwer, http://www.ohgizmo.com/2006/11/15/luminetx-veinviewer/#!baJYx2 .
  8. Veinsite hands-free system, “ http://www.vision-systems.com ,”.
  9. A. Shahzad, M. N. Saad, N. Walter, A. S. Malik, and F. Meriaudeau, “Hyperspectral Venous Image Quality Assessment for Optimum Illumination Range Selection Based on Skin Tone Characteristics,” Biomed. Eng. Online 13(1), 109 (2014).
    [Crossref] [PubMed]
  10. V. C. Paquit, K. W. Tobin, J. R. Price, and F. Mèriaudeau, “3D and Multispectral Imaging for Subcutaneous Veins Detection,” Opt. Express 17(14), 11360–11365 (2009).
    [Crossref] [PubMed]
  11. V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).
  12. D. Ai, J. Yang, J. Fan, Y. Zhao, X. Song, J. Shen, L. Shao, and Y. Wang, “Augmented reality based real-time subcutaneous vein imaging system,” Biomed. Opt. Express 7(7), 2565–2585 (2016).
    [Crossref] [PubMed]
  13. M. Poetke and H. P. Berlien, “Laser treatment in hemangiomas and vascular malformations,” Med. Laser Appl. 20(2), 95–102 (2005).
    [Crossref]
  14. C. T. W. Lahaye and M. J. C. van Gemert, “Optimal laser parameters for port wine stain therapy: a theoretical approach,” Phys. Med. Biol. 30(6), 573–587 (1985).
    [Crossref] [PubMed]
  15. M. J. C. van Gemert, A. J. Welch, and A. P. Amin, “Is there an optimal laser treatment for port wine stains?” Lasers Surg. Med. 6(1), 76–83 (1986).
    [Crossref] [PubMed]
  16. J. W. Tunnell, L. V. Wang, and B. Anvari, “Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study,” Appl. Opt. 42(7), 1367–1378 (2003).
    [Crossref] [PubMed]
  17. A. A. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5(4), 981–988 (1999).
    [Crossref]
  18. J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. Van Gemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers Med. Sci. 11(3), 199–204 (1996).
    [Crossref]
  19. B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
    [Crossref] [PubMed]
  20. S. L. Jacques, I. S. Saidi, and F. K. Tittel, “Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy,” Int. Soc. Opt. Photonics 2128, 231–237 (1994).
  21. I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12(5), 054006 (2007).
    [Crossref] [PubMed]
  22. I. Nishidate, Y. Aizu, and H. Mishina, “Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images,” Opt. Lett. 30(16), 2128–2130 (2005).
    [Crossref] [PubMed]
  23. T. Iwai and G. Kimura, “Imaging of an absorbing object embedded in a dense scattering medium by diffusing light topography,” Opt. Rev. 7(5), 436–441 (2000).
    [Crossref]
  24. A. Chen, K. Nikitczuk, J. Nikitczuk, T. Maguire, and M. Yarmush, “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology (Singap World Sci) 1(1), 72–87 (2013).
    [Crossref] [PubMed]
  25. C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
    [Crossref] [PubMed]
  26. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue - I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
    [Crossref] [PubMed]
  27. L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  28. S. L. Wang, “Monte Carlo Modeling of light transport in multilayer tissue.pdf,”.
  29. S. A.-E. Erik Alerstam, “Monte Carlo Simulations of Light Transport in Tissue,” 1–12 (2008).
  30. S. L. Jacques, “Skin Optics,” .
  31. I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near-infrared (VIS-NIR) reflectance spectra,” Opt. Rev. 10(5), 427–435 (2003).
    [Crossref]
  32. I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
    [Crossref] [PubMed]
  33. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. 1496(1496), 130–137 (1998).
    [Crossref]
  34. V. Paquit, J. R. Price, F. Mériaudeau, K. W. Tobin, and T. L. Ferrell, “Combining near-infrared illuminants to optimize venous imaging,” Proc. SPIE 6509, 65090H (2007).
  35. G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
    [Crossref] [PubMed]
  36. J. Whitman, M. P. Fronheiser, and S. W. Smith, “3-D ultrasound guidance of surgical robotics using catheter transducers: Feasibility study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 993–996 (2008).

2016 (1)

2014 (1)

A. Shahzad, M. N. Saad, N. Walter, A. S. Malik, and F. Meriaudeau, “Hyperspectral Venous Image Quality Assessment for Optimum Illumination Range Selection Based on Skin Tone Characteristics,” Biomed. Eng. Online 13(1), 109 (2014).
[Crossref] [PubMed]

2013 (3)

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

A. Chen, K. Nikitczuk, J. Nikitczuk, T. Maguire, and M. Yarmush, “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology (Singap World Sci) 1(1), 72–87 (2013).
[Crossref] [PubMed]

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
[Crossref] [PubMed]

2010 (2)

L. Hadaway, “Development of an infusion alliance,” J. Infus. Nurs. 33(5), 278–290 (2010).
[Crossref] [PubMed]

O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

J. Whitman, M. P. Fronheiser, and S. W. Smith, “3-D ultrasound guidance of surgical robotics using catheter transducers: Feasibility study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 993–996 (2008).

2007 (2)

V. Paquit, J. R. Price, F. Mériaudeau, K. W. Tobin, and T. L. Ferrell, “Combining near-infrared illuminants to optimize venous imaging,” Proc. SPIE 6509, 65090H (2007).

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12(5), 054006 (2007).
[Crossref] [PubMed]

2005 (2)

2004 (1)

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

2003 (3)

J. W. Tunnell, L. V. Wang, and B. Anvari, “Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study,” Appl. Opt. 42(7), 1367–1378 (2003).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near-infrared (VIS-NIR) reflectance spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[Crossref] [PubMed]

2001 (1)

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref] [PubMed]

2000 (1)

T. Iwai and G. Kimura, “Imaging of an absorbing object embedded in a dense scattering medium by diffusing light topography,” Opt. Rev. 7(5), 436–441 (2000).
[Crossref]

1999 (1)

A. A. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5(4), 981–988 (1999).
[Crossref]

1998 (1)

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. 1496(1496), 130–137 (1998).
[Crossref]

1996 (1)

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. Van Gemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers Med. Sci. 11(3), 199–204 (1996).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1994 (1)

S. L. Jacques, I. S. Saidi, and F. K. Tittel, “Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy,” Int. Soc. Opt. Photonics 2128, 231–237 (1994).

1989 (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue - I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

1986 (1)

M. J. C. van Gemert, A. J. Welch, and A. P. Amin, “Is there an optimal laser treatment for port wine stains?” Lasers Surg. Med. 6(1), 76–83 (1986).
[Crossref] [PubMed]

1985 (1)

C. T. W. Lahaye and M. J. C. van Gemert, “Optimal laser parameters for port wine stain therapy: a theoretical approach,” Phys. Med. Biol. 30(6), 573–587 (1985).
[Crossref] [PubMed]

Ai, D.

Aizu, Y.

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12(5), 054006 (2007).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images,” Opt. Lett. 30(16), 2128–2130 (2005).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near-infrared (VIS-NIR) reflectance spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

Amin, A. P.

M. J. C. van Gemert, A. J. Welch, and A. P. Amin, “Is there an optimal laser treatment for port wine stains?” Lasers Surg. Med. 6(1), 76–83 (1986).
[Crossref] [PubMed]

Anvari, B.

Berlien, H. P.

M. Poetke and H. P. Berlien, “Laser treatment in hemangiomas and vascular malformations,” Med. Laser Appl. 20(2), 95–102 (2005).
[Crossref]

Burke, C.

O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
[Crossref] [PubMed]

Bykowski, J.

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref] [PubMed]

Chen, A.

A. Chen, K. Nikitczuk, J. Nikitczuk, T. Maguire, and M. Yarmush, “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology (Singap World Sci) 1(1), 72–87 (2013).
[Crossref] [PubMed]

Cowan, A.

O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
[Crossref] [PubMed]

Cuper, N. J.

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

de Graaff, J. C.

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

de Roode, R.

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

Erik Alerstam, S. A.-E.

S. A.-E. Erik Alerstam, “Monte Carlo Simulations of Light Transport in Tissue,” 1–12 (2008).

Esenaliev, A. A.

A. A. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5(4), 981–988 (1999).
[Crossref]

Fan, J.

Farahi, R. H.

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

Ferrell, T. L.

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

V. Paquit, J. R. Price, F. Mériaudeau, K. W. Tobin, and T. L. Ferrell, “Combining near-infrared illuminants to optimize venous imaging,” Proc. SPIE 6509, 65090H (2007).

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue - I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Frangi, A. F.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. 1496(1496), 130–137 (1998).
[Crossref]

Fronheiser, M. P.

J. Whitman, M. P. Fronheiser, and S. W. Smith, “3-D ultrasound guidance of surgical robotics using catheter transducers: Feasibility study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 993–996 (2008).

Goodman, D. M.

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. Van Gemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers Med. Sci. 11(3), 199–204 (1996).
[Crossref]

Hadaway, L.

L. Hadaway, “Development of an infusion alliance,” J. Infus. Nurs. 33(5), 278–290 (2010).
[Crossref] [PubMed]

Iwai, T.

T. Iwai and G. Kimura, “Imaging of an absorbing object embedded in a dense scattering medium by diffusing light topography,” Opt. Rev. 7(5), 436–441 (2000).
[Crossref]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

S. L. Jacques, I. S. Saidi, and F. K. Tittel, “Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy,” Int. Soc. Opt. Photonics 2128, 231–237 (1994).

S. L. Jacques, “Skin Optics,” .

Jaspers, J. E. N.

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

Karabutov, A. A.

A. A. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5(4), 981–988 (1999).
[Crossref]

Kimura, G.

T. Iwai and G. Kimura, “Imaging of an absorbing object embedded in a dense scattering medium by diffusing light topography,” Opt. Rev. 7(5), 436–441 (2000).
[Crossref]

Klaessens, J. H. G.

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

Kollias, N.

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref] [PubMed]

Lahaye, C. T. W.

C. T. W. Lahaye and M. J. C. van Gemert, “Optimal laser parameters for port wine stain therapy: a theoretical approach,” Phys. Med. Biol. 30(6), 573–587 (1985).
[Crossref] [PubMed]

Liu, Q.

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
[Crossref] [PubMed]

Maclean, S.

O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
[Crossref] [PubMed]

Maeda, T.

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12(5), 054006 (2007).
[Crossref] [PubMed]

Maguire, T.

A. Chen, K. Nikitczuk, J. Nikitczuk, T. Maguire, and M. Yarmush, “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology (Singap World Sci) 1(1), 72–87 (2013).
[Crossref] [PubMed]

Malik, A. S.

A. Shahzad, M. N. Saad, N. Walter, A. S. Malik, and F. Meriaudeau, “Hyperspectral Venous Image Quality Assessment for Optimum Illumination Range Selection Based on Skin Tone Characteristics,” Biomed. Eng. Online 13(1), 109 (2014).
[Crossref] [PubMed]

Meriaudeau, F.

A. Shahzad, M. N. Saad, N. Walter, A. S. Malik, and F. Meriaudeau, “Hyperspectral Venous Image Quality Assessment for Optimum Illumination Range Selection Based on Skin Tone Characteristics,” Biomed. Eng. Online 13(1), 109 (2014).
[Crossref] [PubMed]

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

Mériaudeau, F.

V. Paquit, J. R. Price, F. Mériaudeau, K. W. Tobin, and T. L. Ferrell, “Combining near-infrared illuminants to optimize venous imaging,” Proc. SPIE 6509, 65090H (2007).

Mèriaudeau, F.

Mikic, B. B.

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[Crossref] [PubMed]

Milner, T. E.

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. Van Gemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers Med. Sci. 11(3), 199–204 (1996).
[Crossref]

Mishina, H.

I. Nishidate, Y. Aizu, and H. Mishina, “Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images,” Opt. Lett. 30(16), 2128–2130 (2005).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near-infrared (VIS-NIR) reflectance spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

Nafiu, O. O.

O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
[Crossref] [PubMed]

Nelson, J. S.

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. Van Gemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers Med. Sci. 11(3), 199–204 (1996).
[Crossref]

Niessen, W. J.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. 1496(1496), 130–137 (1998).
[Crossref]

Niizeki, K.

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12(5), 054006 (2007).
[Crossref] [PubMed]

Nikitczuk, J.

A. Chen, K. Nikitczuk, J. Nikitczuk, T. Maguire, and M. Yarmush, “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology (Singap World Sci) 1(1), 72–87 (2013).
[Crossref] [PubMed]

Nikitczuk, K.

A. Chen, K. Nikitczuk, J. Nikitczuk, T. Maguire, and M. Yarmush, “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology (Singap World Sci) 1(1), 72–87 (2013).
[Crossref] [PubMed]

Nishidate, I.

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12(5), 054006 (2007).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images,” Opt. Lett. 30(16), 2128–2130 (2005).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near-infrared (VIS-NIR) reflectance spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

Nishioka, N. S.

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[Crossref] [PubMed]

Noordmans, H. J.

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

Oraevsky, A. A.

A. A. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5(4), 981–988 (1999).
[Crossref]

Paquit, V.

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

V. Paquit, J. R. Price, F. Mériaudeau, K. W. Tobin, and T. L. Ferrell, “Combining near-infrared illuminants to optimize venous imaging,” Proc. SPIE 6509, 65090H (2007).

Paquit, V. C.

Patterson, M. S.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue - I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Payne, B. P.

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[Crossref] [PubMed]

Poetke, M.

M. Poetke and H. P. Berlien, “Laser treatment in hemangiomas and vascular malformations,” Med. Laser Appl. 20(2), 95–102 (2005).
[Crossref]

Price, J. R.

V. C. Paquit, K. W. Tobin, J. R. Price, and F. Mèriaudeau, “3D and Multispectral Imaging for Subcutaneous Veins Detection,” Opt. Express 17(14), 11360–11365 (2009).
[Crossref] [PubMed]

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

V. Paquit, J. R. Price, F. Mériaudeau, K. W. Tobin, and T. L. Ferrell, “Combining near-infrared illuminants to optimize venous imaging,” Proc. SPIE 6509, 65090H (2007).

Saad, M. N.

A. Shahzad, M. N. Saad, N. Walter, A. S. Malik, and F. Meriaudeau, “Hyperspectral Venous Image Quality Assessment for Optimum Illumination Range Selection Based on Skin Tone Characteristics,” Biomed. Eng. Online 13(1), 109 (2014).
[Crossref] [PubMed]

Saidi, I. S.

S. L. Jacques, I. S. Saidi, and F. K. Tittel, “Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy,” Int. Soc. Opt. Photonics 2128, 231–237 (1994).

Seulin, R.

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

Shahzad, A.

A. Shahzad, M. N. Saad, N. Walter, A. S. Malik, and F. Meriaudeau, “Hyperspectral Venous Image Quality Assessment for Optimum Illumination Range Selection Based on Skin Tone Characteristics,” Biomed. Eng. Online 13(1), 109 (2014).
[Crossref] [PubMed]

Shao, L.

Shen, J.

Smith, S. W.

J. Whitman, M. P. Fronheiser, and S. W. Smith, “3-D ultrasound guidance of surgical robotics using catheter transducers: Feasibility study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 993–996 (2008).

Song, X.

Tanenbaum, B. S.

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. Van Gemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers Med. Sci. 11(3), 199–204 (1996).
[Crossref]

Tittel, F. K.

S. L. Jacques, I. S. Saidi, and F. K. Tittel, “Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy,” Int. Soc. Opt. Photonics 2128, 231–237 (1994).

Tobin, K. W.

V. C. Paquit, K. W. Tobin, J. R. Price, and F. Mèriaudeau, “3D and Multispectral Imaging for Subcutaneous Veins Detection,” Opt. Express 17(14), 11360–11365 (2009).
[Crossref] [PubMed]

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

V. Paquit, J. R. Price, F. Mériaudeau, K. W. Tobin, and T. L. Ferrell, “Combining near-infrared illuminants to optimize venous imaging,” Proc. SPIE 6509, 65090H (2007).

Tremper, K. K.

O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
[Crossref] [PubMed]

Tunnell, J. W.

Tutuo, N.

O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
[Crossref] [PubMed]

Van Gemert, M. J. C.

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. Van Gemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers Med. Sci. 11(3), 199–204 (1996).
[Crossref]

M. J. C. van Gemert, A. J. Welch, and A. P. Amin, “Is there an optimal laser treatment for port wine stains?” Lasers Surg. Med. 6(1), 76–83 (1986).
[Crossref] [PubMed]

C. T. W. Lahaye and M. J. C. van Gemert, “Optimal laser parameters for port wine stain therapy: a theoretical approach,” Phys. Med. Biol. 30(6), 573–587 (1985).
[Crossref] [PubMed]

Venugopalan, V.

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[Crossref] [PubMed]

Verdaasdonk, R. M.

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

Viergever, M. A.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. 1496(1496), 130–137 (1998).
[Crossref]

Vincken, K. L.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. 1496(1496), 130–137 (1998).
[Crossref]

Walter, N.

A. Shahzad, M. N. Saad, N. Walter, A. S. Malik, and F. Meriaudeau, “Hyperspectral Venous Image Quality Assessment for Optimum Illumination Range Selection Based on Skin Tone Characteristics,” Biomed. Eng. Online 13(1), 109 (2014).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, L. V.

Wang, S. L.

S. L. Wang, “Monte Carlo Modeling of light transport in multilayer tissue.pdf,”.

Wang, Y.

Welch, A. J.

M. J. C. van Gemert, A. J. Welch, and A. P. Amin, “Is there an optimal laser treatment for port wine stains?” Lasers Surg. Med. 6(1), 76–83 (1986).
[Crossref] [PubMed]

Whitman, J.

J. Whitman, M. P. Fronheiser, and S. W. Smith, “3-D ultrasound guidance of surgical robotics using catheter transducers: Feasibility study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 993–996 (2008).

Wilson, B. C.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue - I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue - I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Yang, J.

Yarmush, M.

A. Chen, K. Nikitczuk, J. Nikitczuk, T. Maguire, and M. Yarmush, “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology (Singap World Sci) 1(1), 72–87 (2013).
[Crossref] [PubMed]

Zhao, Y.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zhu, C.

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
[Crossref] [PubMed]

Zonios, G.

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Eng. Online (1)

A. Shahzad, M. N. Saad, N. Walter, A. S. Malik, and F. Meriaudeau, “Hyperspectral Venous Image Quality Assessment for Optimum Illumination Range Selection Based on Skin Tone Characteristics,” Biomed. Eng. Online 13(1), 109 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. A. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5(4), 981–988 (1999).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue - I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. Whitman, M. P. Fronheiser, and S. W. Smith, “3-D ultrasound guidance of surgical robotics using catheter transducers: Feasibility study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 993–996 (2008).

Int. Soc. Opt. Photonics (1)

S. L. Jacques, I. S. Saidi, and F. K. Tittel, “Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy,” Int. Soc. Opt. Photonics 2128, 231–237 (1994).

J. Biomed. Opt. (4)

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12(5), 054006 (2007).
[Crossref] [PubMed]

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[Crossref] [PubMed]

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

J. Infus. Nurs. (1)

L. Hadaway, “Development of an infusion alliance,” J. Infus. Nurs. 33(5), 278–290 (2010).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. Van Gemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers Med. Sci. 11(3), 199–204 (1996).
[Crossref]

Lasers Surg. Med. (1)

M. J. C. van Gemert, A. J. Welch, and A. P. Amin, “Is there an optimal laser treatment for port wine stains?” Lasers Surg. Med. 6(1), 76–83 (1986).
[Crossref] [PubMed]

Med. Eng. Phys. (1)

N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children,” Med. Eng. Phys. 35(4), 433–440 (2013).
[Crossref] [PubMed]

Med. Imaging, Int. Soc. Opt. Photonics (1)

V. Paquit, J. R. Price, R. Seulin, F. Meriaudeau, R. H. Farahi, K. W. Tobin, and T. L. Ferrell, “Near-infrared imaging and structured light ranging for automatic catheter insertion,” Med. Imaging, Int. Soc. Opt. Photonics 6141, 61411T (2008).

Med. Laser Appl. (1)

M. Poetke and H. P. Berlien, “Laser treatment in hemangiomas and vascular malformations,” Med. Laser Appl. 20(2), 95–102 (2005).
[Crossref]

Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. (1)

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. 1496(1496), 130–137 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (2)

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near-infrared (VIS-NIR) reflectance spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

T. Iwai and G. Kimura, “Imaging of an absorbing object embedded in a dense scattering medium by diffusing light topography,” Opt. Rev. 7(5), 436–441 (2000).
[Crossref]

Paediatr. Anaesth. (1)

O. O. Nafiu, C. Burke, A. Cowan, N. Tutuo, S. Maclean, and K. K. Tremper, “Comparing peripheral venous access between obese and normal weight children,” Paediatr. Anaesth. 20(2), 172–176 (2010).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

C. T. W. Lahaye and M. J. C. van Gemert, “Optimal laser parameters for port wine stain therapy: a theoretical approach,” Phys. Med. Biol. 30(6), 573–587 (1985).
[Crossref] [PubMed]

Proc. SPIE (1)

V. Paquit, J. R. Price, F. Mériaudeau, K. W. Tobin, and T. L. Ferrell, “Combining near-infrared illuminants to optimize venous imaging,” Proc. SPIE 6509, 65090H (2007).

Technology (Singap World Sci) (1)

A. Chen, K. Nikitczuk, J. Nikitczuk, T. Maguire, and M. Yarmush, “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology (Singap World Sci) 1(1), 72–87 (2013).
[Crossref] [PubMed]

Other (8)

Luminetx Vein Viwer, http://www.ohgizmo.com/2006/11/15/luminetx-veinviewer/#!baJYx2 .

Veinsite hands-free system, “ http://www.vision-systems.com ,”.

AccuVein AV300 Vein viewing system,” catalog.kpnfs.com/equipcat/cutsheets2/VEFI200-C.pdf .,”

Vein locator BS2000 +, ” http://img.tjskl.org.cn/nimg/41/6a/8b7a318853ec0c2f678efa44408b-98x98–1/vein_viewing_medical_light_doctor_costume_accessories_use_safe_light_source_no_laser.jpg .,”.

Veinlite, “ http://www.veinlite.com/purchasing-agents/#.U7vQqfldWmE .

S. L. Wang, “Monte Carlo Modeling of light transport in multilayer tissue.pdf,”.

S. A.-E. Erik Alerstam, “Monte Carlo Simulations of Light Transport in Tissue,” 1–12 (2008).

S. L. Jacques, “Skin Optics,” .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Multilayered skin tissue model.
Fig. 2
Fig. 2 (a) Dependent on OD ratio 1 (R1) for depth; (b) Dependent on OD ratio 2 (R2) for thickness; both values derived from MCML simulations.
Fig. 3
Fig. 3 (a) Evolution of ratio R1 as a function of depth for ten different Cm groups. (b) Evolution of ratio R2 as a function of thickness for ten different Cm groups; Depth and Thickness when both are set to 1mm.
Fig. 4
Fig. 4 (a) depth using R1; (b) thickness using R2.
Fig. 5
Fig. 5 Estimation processes for depth and thickness of veins using OD ratios.
Fig. 6
Fig. 6 Vein depth and thickness measuring system.
Fig. 7
Fig. 7 Melanin content results for UVB-irradiated skin sites taken from five subjects (Skin Type II–IV) vs. corresponding values of the ‘characteristic angle’ (α).Reproduced from [35].
Fig. 8
Fig. 8 (a) Selecting a point from fused images to extract values of: (b) depth and (c) thickness using the proposed imaging system.
Fig. 9
Fig. 9 Summarizes process flows for the proposed system.
Fig. 10
Fig. 10 Depth and thickness measurement using an ultrasound linear transducer.
Fig. 11
Fig. 11 Correlations between ultrasound and optical assays for (a) depth and (b) thickness.
Fig. 12
Fig. 12 Ultrasound measurements: (a) depth, (b) thickness.
Fig. 13
Fig. 13 Tolerance of thickness measurements for the two subjects.
Fig. 14
Fig. 14 Correlation measurements between ultrasound and optic based on vary BMI index: (a) Group 1: BMI = 20 – 25, (b) Group 2: BMI = 25 – 30 and (c) Group 3: BMI = 30 – 35.
Fig. 15
Fig. 15 Correlation measurements between ultrasound and optic measurements for one distinct tone: (a) fair, (b) light brown, (c) dark brown, (d) dark.

Tables (4)

Tables Icon

Table 1 Optical parameters for each skin tissue model used in MCML simulation [21].

Tables Icon

Table 2 The discrepancy of thickness measurement between ultrasound and optical measurement.

Tables Icon

Table 3 R2 value for depth and thickness between ultrasound and optic based on BMI index.

Tables Icon

Table 4 Values for R2 and tolerance of depth and thickness for all skin type measurements.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

μ a,epi(λ) = C m × μ a,m(λ)
μ a,epi (λ)= C m × μ a,m (λ)
μ a,der (λ)= C b × μ a,b (λ)
R(x,y,λ)= [I(x,y,λ) I 2 (x,y,λ)]× R 1 [I(x,y,λ) I 1 (x,y,λ)]× R 2 I 1 (x,y,λ) I 2 (x,y,λ)
OD(λ)=Log(R)
α= tan 1 ( L * 50 b * )

Metrics