Abstract

We report a comprehensive experimental study of optical and electrical properties of thin polycrystalline gold films in a wide range of film thicknesses (from 20 to 200 nm). Our experimental results are supported by theoretical calculations based on the measured morphology of the fabricated gold films. We demonstrate that the dielectric function of the metal is determined by its structural morphology. Although the fabrication process can be absolutely the same for different films, the dielectric function can strongly depend on the film thickness. Our studies show that the imaginary part of the dielectric function of gold, which is responsible for optical losses, rapidly increases as the film thickness decreases for thicknesses below 80 nm. At the same time, we do not observe a noticeable dependence of optical constants on the film thickness for thicker samples. These findings establish design rules for thin-film plasmonic and nanophotonic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-dependent optical properties of gold thin films

Harsha Reddy, Urcan Guler, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev
Opt. Mater. Express 6(9) 2776-2802 (2016)

Optical constants of very thin gold films in the soft x-ray region

Mihiro Yanagihara, Jianlin Cao, Masaki Yamamoto, Akira Arai, Shigeru Nakayama, Tamaki Mizuide, and Takeshi Namioka
Appl. Opt. 30(19) 2807-2814 (1991)

Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films

Xuefeng Wang, Kuo-ping Chen, Ming Zhao, and David D. Nolte
Opt. Express 18(24) 24859-24867 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
    [Crossref] [PubMed]
  3. B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
    [Crossref]
  4. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
    [Crossref]
  5. S. Gwo and C.-K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
    [Crossref] [PubMed]
  6. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
    [Crossref] [PubMed]
  7. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces,” Nano Lett. 15(1), 791–797 (2015).
    [Crossref] [PubMed]
  8. T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
    [Crossref] [PubMed]
  9. A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B 1(4), 1382–1389 (1970).
    [Crossref]
  10. A. F. Mayadas, M. Shatzkes, and J. F. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces,” Appl. Phys. Lett. 14(11), 345–347 (1969).
    [Crossref]
  11. J. Sotelo, J. Ederth, and G. Niklasson, “Optical properties of polycrystalline metallic films,” Phys. Rev. B 67(19), 195106 (2003).
    [Crossref]
  12. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref] [PubMed]
  13. D. Yu. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss CMOS copper plasmonic waveguides,” Nano Lett. 16(1), 362–366 (2016).
    [Crossref] [PubMed]
  14. L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, “Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers,” ACS Appl. Mater. Interfaces 7(10), 5797–5802 (2015).
    [Crossref] [PubMed]
  15. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  16. P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(11), 2445–2455 (2013).
    [Crossref]
  17. E.-T. Hu, Q.-Y. Cai, R.-J. Zhang, Y.-F. Wei, W.-C. Zhou, S.-Y. Wang, Y.-X. Zheng, W. Wei, and L.-Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41(21), 4907–4910 (2016).
    [Crossref] [PubMed]
  18. M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
    [Crossref]
  19. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
    [Crossref]
  20. H. Qian, Y. Xiao, D. Lepage, L. Chen, and Z. Liu, “Quantum electrostatic model for optical properties of nanoscale gold films,” Nanophotonics 4(1), 413–418 (2015).
    [Crossref]
  21. X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films,” J. Nanopart. Res. 17(2), 67 (2015).
    [Crossref]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099 (1983).
    [Crossref] [PubMed]
  23. D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
    [Crossref] [PubMed]
  24. I. Kojima and B. Li, “Structural characterization of thin films by X-ray reflectivity,” Rigaku J. 16(2), 31–41 (1999).
  25. T. C. Huang, R. Giiles, and G. Will, “Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer,” Thin Solid Films 230(2), 99–101 (1993).
    [Crossref]
  26. J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
    [Crossref] [PubMed]
  27. A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
    [Crossref]
  28. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
    [Crossref] [PubMed]
  29. Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
    [Crossref]
  30. X. Zhang, X. Song, X.-G. Zhang, and D. Zhang, “Grain boundary resistivities of polycrystalline Au films,” EPL 96(1), 17010 (2011).
    [Crossref]
  31. M. Wei-Gang, W. Hai-Dong, Z. Xing, and T. Koji, “Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms,” Chin. Phys. B 18(5), 2035–2040 (2009).
    [Crossref]
  32. G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, “Conductivity drop and crystallites redistribution in gold film,” Appl. Phys., A Mater. Sci. Process. 80(3), 659–665 (2005).
    [Crossref]
  33. W. G. Ma, H. D. Wang, X. Zhang, and W. Wang, “Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films,” J. Appl. Phys. 108(6), 064308 (2010).
    [Crossref]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  35. G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
    [Crossref]
  36. Y. F. Zhu, X. Y. Lang, W. T. Zheng, and Q. Jiang, “Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point,” ACS Nano 4(7), 3781–3788 (2010).
    [Crossref] [PubMed]
  37. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
    [Crossref]
  38. E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen,” Z. Phys. 241(4), 313–324 (1971).
    [Crossref]
  39. M. Yamamoto, “Surface plasmon resonance (SPR) theory: tutorial,” Rev. Polarogr. 48(3), 209–237 (2002).
    [Crossref]
  40. Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
    [Crossref] [PubMed]

2017 (1)

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

2016 (6)

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

S. Gwo and C.-K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
[Crossref] [PubMed]

D. Yu. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss CMOS copper plasmonic waveguides,” Nano Lett. 16(1), 362–366 (2016).
[Crossref] [PubMed]

E.-T. Hu, Q.-Y. Cai, R.-J. Zhang, Y.-F. Wei, W.-C. Zhou, S.-Y. Wang, Y.-X. Zheng, W. Wei, and L.-Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41(21), 4907–4910 (2016).
[Crossref] [PubMed]

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

2015 (9)

H. Qian, Y. Xiao, D. Lepage, L. Chen, and Z. Liu, “Quantum electrostatic model for optical properties of nanoscale gold films,” Nanophotonics 4(1), 413–418 (2015).
[Crossref]

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films,” J. Nanopart. Res. 17(2), 67 (2015).
[Crossref]

L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, “Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers,” ACS Appl. Mater. Interfaces 7(10), 5797–5802 (2015).
[Crossref] [PubMed]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
[Crossref]

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces,” Nano Lett. 15(1), 791–797 (2015).
[Crossref] [PubMed]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

2013 (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(11), 2445–2455 (2013).
[Crossref]

2012 (2)

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref] [PubMed]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

2011 (2)

X. Zhang, X. Song, X.-G. Zhang, and D. Zhang, “Grain boundary resistivities of polycrystalline Au films,” EPL 96(1), 17010 (2011).
[Crossref]

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

2010 (3)

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

W. G. Ma, H. D. Wang, X. Zhang, and W. Wang, “Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films,” J. Appl. Phys. 108(6), 064308 (2010).
[Crossref]

Y. F. Zhu, X. Y. Lang, W. T. Zheng, and Q. Jiang, “Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point,” ACS Nano 4(7), 3781–3788 (2010).
[Crossref] [PubMed]

2009 (1)

M. Wei-Gang, W. Hai-Dong, Z. Xing, and T. Koji, “Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms,” Chin. Phys. B 18(5), 2035–2040 (2009).
[Crossref]

2006 (1)

Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
[Crossref]

2005 (1)

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, “Conductivity drop and crystallites redistribution in gold film,” Appl. Phys., A Mater. Sci. Process. 80(3), 659–665 (2005).
[Crossref]

2003 (1)

J. Sotelo, J. Ederth, and G. Niklasson, “Optical properties of polycrystalline metallic films,” Phys. Rev. B 67(19), 195106 (2003).
[Crossref]

2002 (1)

M. Yamamoto, “Surface plasmon resonance (SPR) theory: tutorial,” Rev. Polarogr. 48(3), 209–237 (2002).
[Crossref]

1999 (1)

I. Kojima and B. Li, “Structural characterization of thin films by X-ray reflectivity,” Rigaku J. 16(2), 31–41 (1999).

1993 (1)

T. C. Huang, R. Giiles, and G. Will, “Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer,” Thin Solid Films 230(2), 99–101 (1993).
[Crossref]

1983 (1)

1981 (1)

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1971 (1)

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

1970 (1)

A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B 1(4), 1382–1389 (1970).
[Crossref]

1969 (1)

A. F. Mayadas, M. Shatzkes, and J. F. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces,” Appl. Phys. Lett. 14(11), 345–347 (1969).
[Crossref]

1952 (1)

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[Crossref]

Aftenieva, O. A.

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

Aizpurua, J.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Aldewachi, H.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Alexander, R. W.

Ambwani, P.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Arsenin, A. V.

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref] [PubMed]

Bartal, G.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Baumberg, J.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Belardini, A.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Benz, F.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Bochenkov, V.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Bocková, M.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Boltasseva, A.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Borneman, J. D.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces,” Nano Lett. 15(1), 791–797 (2015).
[Crossref] [PubMed]

Cai, Q.-Y.

Cao, B. Y.

Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
[Crossref]

Chen, G.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, “Conductivity drop and crystallites redistribution in gold film,” Appl. Phys., A Mater. Sci. Process. 80(3), 659–665 (2005).
[Crossref]

Chen, K.-P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Chen, L.

H. Qian, Y. Xiao, D. Lepage, L. Chen, and Z. Liu, “Quantum electrostatic model for optical properties of nanoscale gold films,” Nanophotonics 4(1), 413–418 (2015).
[Crossref]

Chen, L.-Y.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

E.-T. Hu, Q.-Y. Cai, R.-J. Zhang, Y.-F. Wei, W.-C. Zhou, S.-Y. Wang, Y.-X. Zheng, W. Wei, and L.-Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41(21), 4907–4910 (2016).
[Crossref] [PubMed]

Chen, T. P.

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films,” J. Nanopart. Res. 17(2), 67 (2015).
[Crossref]

Chen, X.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

Chen, Y.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Christy, R. W.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

de Nijs, B.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

de Roque, P.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Drachev, V. P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Ebbesen, T.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Ederth, J.

J. Sotelo, J. Ederth, and G. Niklasson, “Optical properties of polycrystalline metallic films,” Phys. Rev. B 67(19), 195106 (2003).
[Crossref]

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
[Crossref]

Fedyanin, D. Yu.

D. Yu. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss CMOS copper plasmonic waveguides,” Nano Lett. 16(1), 362–366 (2016).
[Crossref] [PubMed]

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref] [PubMed]

Flatté, M.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Fujii, M.

Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
[Crossref]

Galfsky, T.

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

García de Abajo, F. J.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Giiles, R.

T. C. Huang, R. Giiles, and G. Will, “Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer,” Thin Solid Films 230(2), 99–101 (1993).
[Crossref]

Ginzburg, P.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Gu, J.

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

Guler, U.

Gwo, S.

S. Gwo and C.-K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
[Crossref] [PubMed]

Hai-Dong, W.

M. Wei-Gang, W. Hai-Dong, Z. Xing, and T. Koji, “Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms,” Chin. Phys. B 18(5), 2035–2040 (2009).
[Crossref]

Hing, P.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, “Conductivity drop and crystallites redistribution in gold film,” Appl. Phys., A Mater. Sci. Process. 80(3), 659–665 (2005).
[Crossref]

Homola, J.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Hu, E.-T.

Huang, T. C.

T. C. Huang, R. Giiles, and G. Will, “Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer,” Thin Solid Films 230(2), 99–101 (1993).
[Crossref]

Hugall, J. T.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Hui, P.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, “Conductivity drop and crystallites redistribution in gold film,” Appl. Phys., A Mater. Sci. Process. 80(3), 659–665 (2005).
[Crossref]

Hutchison, J.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Ikuta, T.

Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Janak, J. F.

A. F. Mayadas, M. Shatzkes, and J. F. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces,” Appl. Phys. Lett. 14(11), 345–347 (1969).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jiang, Q.

Y. F. Zhu, X. Y. Lang, W. T. Zheng, and Q. Jiang, “Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point,” ACS Nano 4(7), 3781–3788 (2010).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kéna-Cohen, S.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Kildishev, A. V.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Kirtaev, R. V.

D. Yu. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss CMOS copper plasmonic waveguides,” Nano Lett. 16(1), 362–366 (2016).
[Crossref] [PubMed]

Koji, T.

M. Wei-Gang, W. Hai-Dong, Z. Xing, and T. Koji, “Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms,” Chin. Phys. B 18(5), 2035–2040 (2009).
[Crossref]

Kojima, I.

I. Kojima and B. Li, “Structural characterization of thin films by X-ray reflectivity,” Rigaku J. 16(2), 31–41 (1999).

Kong, L.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, “Conductivity drop and crystallites redistribution in gold film,” Appl. Phys., A Mater. Sci. Process. 80(3), 659–665 (2005).
[Crossref]

Kornyshev, A. A.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Kossoy, A.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Kotni, S.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Krasavin, A. V.

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref] [PubMed]

Kravets, V. G.

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(11), 2445–2455 (2013).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Kretschmann, E.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

Kumar, S.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Kuryoz, P. Yu.

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(11), 2445–2455 (2013).
[Crossref]

Lang, X. Y.

Y. F. Zhu, X. Y. Lang, W. T. Zheng, and Q. Jiang, “Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point,” ACS Nano 4(7), 3781–3788 (2010).
[Crossref] [PubMed]

Lavrinenko, A.

L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, “Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers,” ACS Appl. Mater. Interfaces 7(10), 5797–5802 (2015).
[Crossref] [PubMed]

Lawrence, W. E.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

Leandro, L.

L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, “Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers,” ACS Appl. Mater. Interfaces 7(10), 5797–5802 (2015).
[Crossref] [PubMed]

Leighton, C.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Leong, K. C.

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films,” J. Nanopart. Res. 17(2), 67 (2015).
[Crossref]

Leosson, K.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Lepage, D.

H. Qian, Y. Xiao, D. Lepage, L. Chen, and Z. Liu, “Quantum electrostatic model for optical properties of nanoscale gold films,” Nanophotonics 4(1), 413–418 (2015).
[Crossref]

Li, B.

I. Kojima and B. Li, “Structural characterization of thin films by X-ray reflectivity,” Rigaku J. 16(2), 31–41 (1999).

Li, X. D.

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films,” J. Nanopart. Res. 17(2), 67 (2015).
[Crossref]

Lin, K.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Lindquist, N. C.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Liu, Y.

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films,” J. Nanopart. Res. 17(2), 67 (2015).
[Crossref]

Liu, Z.

H. Qian, Y. Xiao, D. Lepage, L. Chen, and Z. Liu, “Quantum electrostatic model for optical properties of nanoscale gold films,” Nanophotonics 4(1), 413–418 (2015).
[Crossref]

Long, L. L.

Ma, W. G.

W. G. Ma, H. D. Wang, X. Zhang, and W. Wang, “Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films,” J. Appl. Phys. 108(6), 064308 (2010).
[Crossref]

Maier, S. A.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Malureanu, R.

L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, “Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers,” ACS Appl. Mater. Interfaces 7(10), 5797–5802 (2015).
[Crossref] [PubMed]

Manno, M.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Martin, O.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Matczyszyn, K.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Mayadas, A. F.

A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B 1(4), 1382–1389 (1970).
[Crossref]

A. F. Mayadas, M. Shatzkes, and J. F. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces,” Appl. Phys. Lett. 14(11), 345–347 (1969).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Menon, V. M.

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

Merk, V.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Moskovits, M.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Mount, A.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Nagpal, P.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Narang, P.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Narimanov, E. E.

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

Nielsen, M. G.

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces,” Nano Lett. 15(1), 791–797 (2015).
[Crossref] [PubMed]

Niklasson, G.

J. Sotelo, J. Ederth, and G. Niklasson, “Optical properties of polycrystalline metallic films,” Phys. Rev. B 67(19), 195106 (2003).
[Crossref]

Noginov, M.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Oh, S.-H.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Ordal, M. A.

Palomba, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Park, J. H.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Park, Y.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Parkins, G. R.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

Pita, K.

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, “Conductivity drop and crystallites redistribution in gold film,” Appl. Phys., A Mater. Sci. Process. 80(3), 659–665 (2005).
[Crossref]

Podolskiy, V.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Poperenko, L. V.

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(11), 2445–2455 (2013).
[Crossref]

Pors, A.

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces,” Nano Lett. 15(1), 791–797 (2015).
[Crossref] [PubMed]

Qian, H.

H. Qian, Y. Xiao, D. Lepage, L. Chen, and Z. Liu, “Quantum electrostatic model for optical properties of nanoscale gold films,” Nanophotonics 4(1), 413–418 (2015).
[Crossref]

Reddy, H.

Richards, D.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Rodríguez Fortuño, F.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Rozlosnik, N.

L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, “Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers,” ACS Appl. Mater. Interfaces 7(10), 5797–5802 (2015).
[Crossref] [PubMed]

Schmid, S.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Shatzkes, M.

A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B 1(4), 1382–1389 (1970).
[Crossref]

A. F. Mayadas, M. Shatzkes, and J. F. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces,” Appl. Phys. Lett. 14(11), 345–347 (1969).
[Crossref]

Shih, C.-K.

S. Gwo and C.-K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
[Crossref] [PubMed]

Simakov, D.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Sondheimer, E. H.

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[Crossref]

Song, X.

X. Zhang, X. Song, X.-G. Zhang, and D. Zhang, “Grain boundary resistivities of polycrystalline Au films,” EPL 96(1), 17010 (2011).
[Crossref]

Sotelo, J.

J. Sotelo, J. Ederth, and G. Niklasson, “Optical properties of polycrystalline metallic films,” Phys. Rev. B 67(19), 195106 (2003).
[Crossref]

Špacková, B.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Stebunov, Y. V.

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
[Crossref]

Sun, Y.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

Takahashi, K.

Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
[Crossref]

van Hulst, N.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Volkov, V. S.

D. Yu. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss CMOS copper plasmonic waveguides,” Nano Lett. 16(1), 362–366 (2016).
[Crossref] [PubMed]

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

Wang, H. D.

W. G. Ma, H. D. Wang, X. Zhang, and W. Wang, “Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films,” J. Appl. Phys. 108(6), 064308 (2010).
[Crossref]

Wang, S.-Y.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

E.-T. Hu, Q.-Y. Cai, R.-J. Zhang, Y.-F. Wei, W.-C. Zhou, S.-Y. Wang, Y.-X. Zheng, W. Wei, and L.-Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41(21), 4907–4910 (2016).
[Crossref] [PubMed]

Wang, W.

W. G. Ma, H. D. Wang, X. Zhang, and W. Wang, “Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films,” J. Appl. Phys. 108(6), 064308 (2010).
[Crossref]

Wang, Z.-Y.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

Ward, C. A.

Wei, W.

Wei, Y.-F.

Wei-Gang, M.

M. Wei-Gang, W. Hai-Dong, Z. Xing, and T. Koji, “Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms,” Chin. Phys. B 18(5), 2035–2040 (2009).
[Crossref]

Will, G.

T. C. Huang, R. Giiles, and G. Will, “Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer,” Thin Solid Films 230(2), 99–101 (1993).
[Crossref]

Wrobel, P.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Xiao, Y.

H. Qian, Y. Xiao, D. Lepage, L. Chen, and Z. Liu, “Quantum electrostatic model for optical properties of nanoscale gold films,” Nanophotonics 4(1), 413–418 (2015).
[Crossref]

Xing, Z.

M. Wei-Gang, W. Hai-Dong, Z. Xing, and T. Koji, “Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms,” Chin. Phys. B 18(5), 2035–2040 (2009).
[Crossref]

Yakubovsky, D. I.

D. Yu. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss CMOS copper plasmonic waveguides,” Nano Lett. 16(1), 362–366 (2016).
[Crossref] [PubMed]

Yamamoto, M.

M. Yamamoto, “Surface plasmon resonance (SPR) theory: tutorial,” Rev. Polarogr. 48(3), 209–237 (2002).
[Crossref]

Yin, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Zayats, A.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

Zayats, A. V.

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref] [PubMed]

Zhang, D.

X. Zhang, X. Song, X.-G. Zhang, and D. Zhang, “Grain boundary resistivities of polycrystalline Au films,” EPL 96(1), 17010 (2011).
[Crossref]

Zhang, M.-Y.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

Zhang, Q. G.

Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
[Crossref]

Zhang, R.-J.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

E.-T. Hu, Q.-Y. Cai, R.-J. Zhang, Y.-F. Wei, W.-C. Zhou, S.-Y. Wang, Y.-X. Zheng, W. Wei, and L.-Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41(21), 4907–4910 (2016).
[Crossref] [PubMed]

Zhang, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Zhang, T.-N.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

Zhang, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

X. Zhang, X. Song, X.-G. Zhang, and D. Zhang, “Grain boundary resistivities of polycrystalline Au films,” EPL 96(1), 17010 (2011).
[Crossref]

W. G. Ma, H. D. Wang, X. Zhang, and W. Wang, “Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films,” J. Appl. Phys. 108(6), 064308 (2010).
[Crossref]

Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
[Crossref]

Zhang, X.-G.

X. Zhang, X. Song, X.-G. Zhang, and D. Zhang, “Grain boundary resistivities of polycrystalline Au films,” EPL 96(1), 17010 (2011).
[Crossref]

Zhang, Y.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

Zheng, W. T.

Y. F. Zhu, X. Y. Lang, W. T. Zheng, and Q. Jiang, “Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point,” ACS Nano 4(7), 3781–3788 (2010).
[Crossref] [PubMed]

Zheng, Y.-X.

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

E.-T. Hu, Q.-Y. Cai, R.-J. Zhang, Y.-F. Wei, W.-C. Zhou, S.-Y. Wang, Y.-X. Zheng, W. Wei, and L.-Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41(21), 4907–4910 (2016).
[Crossref] [PubMed]

Zhou, W.-C.

Zhu, Y. F.

Y. F. Zhu, X. Y. Lang, W. T. Zheng, and Q. Jiang, “Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point,” ACS Nano 4(7), 3781–3788 (2010).
[Crossref] [PubMed]

Zueco, D.

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, “Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers,” ACS Appl. Mater. Interfaces 7(10), 5797–5802 (2015).
[Crossref] [PubMed]

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

ACS Nano (1)

Y. F. Zhu, X. Y. Lang, W. T. Zheng, and Q. Jiang, “Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point,” ACS Nano 4(7), 3781–3788 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Adv. Phys. (1)

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Q. G. Zhang, X. Zhang, B. Y. Cao, M. Fujii, K. Takahashi, and T. Ikuta, “Influence of grain boundary scattering on the electrical properties of platinum nanofilms,” Appl. Phys. Lett. 89(11), 114102 (2006).
[Crossref]

A. F. Mayadas, M. Shatzkes, and J. F. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces,” Appl. Phys. Lett. 14(11), 345–347 (1969).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

G. Chen, P. Hui, K. Pita, P. Hing, and L. Kong, “Conductivity drop and crystallites redistribution in gold film,” Appl. Phys., A Mater. Sci. Process. 80(3), 659–665 (2005).
[Crossref]

Chin. Phys. B (1)

M. Wei-Gang, W. Hai-Dong, Z. Xing, and T. Koji, “Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms,” Chin. Phys. B 18(5), 2035–2040 (2009).
[Crossref]

EPL (1)

X. Zhang, X. Song, X.-G. Zhang, and D. Zhang, “Grain boundary resistivities of polycrystalline Au films,” EPL 96(1), 17010 (2011).
[Crossref]

Faraday Discuss. (1)

V. Bochenkov, J. Baumberg, M. Noginov, F. Benz, H. Aldewachi, S. Schmid, V. Podolskiy, J. Aizpurua, K. Lin, T. Ebbesen, A. A. Kornyshev, J. Hutchison, K. Matczyszyn, S. Kumar, B. de Nijs, F. Rodríguez Fortuño, J. T. Hugall, P. de Roque, N. van Hulst, S. Kotni, O. Martin, F. J. García de Abajo, M. Flatté, A. Mount, M. Moskovits, P. Ginzburg, D. Zueco, A. Zayats, S.-H. Oh, Y. Chen, D. Richards, A. Belardini, and P. Narang, “Applications of plasmonics: general discussion,” Faraday Discuss. 178, 435–466 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

W. G. Ma, H. D. Wang, X. Zhang, and W. Wang, “Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films,” J. Appl. Phys. 108(6), 064308 (2010).
[Crossref]

J. Nanopart. Res. (1)

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films,” J. Nanopart. Res. 17(2), 67 (2015).
[Crossref]

J. Nanophotonics (1)

M.-Y. Zhang, Z.-Y. Wang, T.-N. Zhang, Y. Zhang, R.-J. Zhang, X. Chen, Y. Sun, Y.-X. Zheng, S.-Y. Wang, and L.-Y. Chen, “Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region,” J. Nanophotonics 10(3), 033009 (2016).
[Crossref]

Light Sci. Appl. (1)

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
[Crossref]

Nano Lett. (4)

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces,” Nano Lett. 15(1), 791–797 (2015).
[Crossref] [PubMed]

D. Yu. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss CMOS copper plasmonic waveguides,” Nano Lett. 16(1), 362–366 (2016).
[Crossref] [PubMed]

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref] [PubMed]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

H. Qian, Y. Xiao, D. Lepage, L. Chen, and Z. Liu, “Quantum electrostatic model for optical properties of nanoscale gold films,” Nanophotonics 4(1), 413–418 (2015).
[Crossref]

Nat. Mater. (1)

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (4)

J. Sotelo, J. Ederth, and G. Niklasson, “Optical properties of polycrystalline metallic films,” Phys. Rev. B 67(19), 195106 (2003).
[Crossref]

A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B 1(4), 1382–1389 (1970).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(11), 2445–2455 (2013).
[Crossref]

Proc. IEEE (1)

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

S. Gwo and C.-K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
[Crossref] [PubMed]

Rev. Polarogr. (1)

M. Yamamoto, “Surface plasmon resonance (SPR) theory: tutorial,” Rev. Polarogr. 48(3), 209–237 (2002).
[Crossref]

Rigaku J. (1)

I. Kojima and B. Li, “Structural characterization of thin films by X-ray reflectivity,” Rigaku J. 16(2), 31–41 (1999).

Thin Solid Films (1)

T. C. Huang, R. Giiles, and G. Will, “Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer,” Thin Solid Films 230(2), 99–101 (1993).
[Crossref]

Z. Phys. (1)

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Surface profile of the step height imaged with AFM, which gives 25 nm for the film thickness, and (b) results of the XRR curve fitting, which yields the film thickness of 24.1 nm. Inset in (b) represents a comparison between the results of XRR and AFM thickness measurements for three different thin films.

Fig. 2
Fig. 2

AFM surface morphology images of the deposited Au films. The film thickness is found to be close to ~44 nm (a) and ~117 nm (b). Scale bar in both panels is 500 nm. AFM scan profiles were used to estimate average grain size (~41 ± 12 and ~57 ± 15 nm) and RMS roughness values (~1.05 and ~1.53 nm) for both films, respectively.

Fig. 3
Fig. 3

XRD θ/2θ measurements of the deposited gold films. (a) Au (111) diffraction peaks of different colors corresponding to various film thicknesses. (b) The average crystallite size estimated for different films versus films thickness (with a nonlinear curve fitted to experimental data).

Fig. 4
Fig. 4

The measured real ε' and imaginary ε'' parts of the dielectric functions of Au films for several selected thicknesses (also see Table 2 in Appendix). Corresponding values of the film thicknesses (marked by different colors) are listed in the right panel.

Fig. 5
Fig. 5

Experimentally extracted damping rate γ value (yellow squares) as a function of the film thickness. The solid lines (used to guide the eye) represent a nonlinear approximation of experiments by the least-square method. Red and green lines show an approximation of the damping rate values calculated for the film thickness variations of −1 nm (green)/+1 nm (red), respectively. Black dashed line shows the theoretical behavior of the damping rate based on MS model, which fits the data of the experimental dependence. Thickness dependence of conductivity is represented in blue.

Fig. 6
Fig. 6

(a) SPR angular reflectivity curves for gold films with different crystallinity and at four different wavelengths of laser radiation. (b) Full-width at half-maximum and figure of merit for SPR biosensing based on thin gold films with different crystallinity.

Tables (2)

Tables Icon

Table 1 RMS roughness of Au thin films of various thicknesses estimated from the corresponding AFM images

Tables Icon

Table 2 The measured real ε' and imaginary ε'' parts of thin gold films

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D= λ β 2 + β std 2 cosθ
ε=ε'+iε''= ε ω p 2 ω 2 +iγω = ε ω p 2 ω 2 + γ 2 +i γ ω p 2 ω( ω 2 + γ 2 )
γ gb = γ ep { [ 1 3 2 α+3 α 2 3 α 3 ln( 1+ 1 α ) ] 1 1 }
S RI = Δα Δn

Metrics