Abstract

We present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films. Multi-pulse laser damage tests were performed on tin-doped indium oxide (ITO) films configured to improve optical lifetime damage performance. Conditions where improvements were not observed are also described. When bulk heating is not the dominant damage process, discrete defect-induced damage limits damage behavior.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical and electrical properties of indium tin oxide films near their laser damage threshold

Jae-Hyuck Yoo, Andrew Lange, Jeff Bude, and Selim Elhadj
Opt. Mater. Express 7(3) 817-826 (2017)

Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling

Selim Elhadj, Jae-hyuck Yoo, Raluca A. Negres, Marlon G. Menor, John J. Adams, Nan Shen, David A. Cross, Isaac L. Bass, and Jeff D. Bude
Opt. Mater. Express 7(1) 202-212 (2017)

Laser damage mechanisms in conductive widegap semiconductor films

Jae-Hyuck Yoo, Marlon G. Menor, John J. Adams, Rajesh N. Raman, Jonathan R. I. Lee, Tammy Y. Olson, Nan Shen, Joonki Suh, Stavros G. Demos, Jeff Bude, and Selim Elhadj
Opt. Express 24(16) 17616-17634 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 808–816 (2012).
  2. L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
    [PubMed]
  3. D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free-carrier absorption in silicon,” IEEE J. Solid-St. Circulation 13(1), 180–187 (1978).
  4. W. S. Brocklesby, “Progress in high average power ultrafast lasers,” Eur. Phys. J. Spec. Top. 224(13), 2529–2543 (2015).
  5. F. Canova and J. P. Chambaret, “Power amplification for petawatt Ti: Sapphire lasers: new strategies for high fluence pumping,” J. Phys. IV 133, 561–565 (2006).
  6. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” Sci. Eng. 3(e3), 1–14 (2015).
  7. W. T. Pawlewicz and R. Busch, “Reactively sputtered oxide optical coatings for inertial confinement fusion laser components,” Thin Solid Films 63(2), 251–256 (1979).
  8. J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. I. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
    [PubMed]
  9. H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).
  10. D. A. Willis, “Thermal mechanisms of laser micromachining of indium tin oxide,” Proc. SPIE 5339, 313–320 (2004).
  11. M. Fox, Optical Properties of Solids (Oxford, 2010).
  12. S. Elhadj, J. Yoo, R. A. Negres, M. G. Menor, J. J. Adams, N. Shen, D. A. Cross, I. L. Bass, and J. D. Bude, “Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling,” Opt. Mater. Express 7(1), 202–212 (2017).
  13. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal-surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1998).
  14. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
  15. M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
  16. G. M. Guss, A. K. Sridharan, S. Elhadj, M. A. Johnson, and M. J. Matthews, “Nanoscale surface tracking of laser material processing using phase shifting diffraction interferometry,” Opt. Express 22(12), 14493–14504 (2014).
    [PubMed]
  17. I. Stark, M. Stordeur, and F. Syrowatka, “Thermal-conductivity of thin amorphous alumina films,” Thin Solid Films 226, 185–190 (1993).
  18. “Single crystal sapphire,” http://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf
  19. “Schott D 263 Thin Borosilicate Glass,” http://www.matweb.com/search/datasheet.aspx?matguid=8df9f3e0106d43818ebe1862e76a1107
  20. T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).
  21. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
    [PubMed]
  22. F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).
  23. M. F. Becker, C. Ma, and R. M. Walser, “Predicting multipulse laser-induced failure for molybdenum metal mirrors,” Appl. Opt. 30(36), 5239–5246 (1991).
    [PubMed]
  24. T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue life study of ITO/PET specimens in terms of electrical resistance and stress/strain via cyclic bending tests,” J. Disp. Technol. 9(7), 577–585 (2013).
  25. J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
  26. K. Alzoubi, M. M. Hamasha, S. S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol. 7(11), 593–600 (2011).
  27. H. Lee, J. Seo, Y. Choi, and D. Lee, “The growth of indium-tin-oxide thin films on glass substrates using DC reactive magnetron sputtering,” Vacuum 72(3), 269–276 (2003).
  28. O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, “High quality ITO thin films grown by dc and RF sputtering without oxygen,” J. Phys. D Appl. Phys. 43(5), 055402 (2010).
  29. D. M. Mattox and V. H. Mattox, 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters (Society of Vacuum Coaters, 2007), Chap. 7.
  30. T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys. 38(6), 3682–3688 (1999).
  31. N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 085305 (2013).
  32. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21(5), S117–S128 (2003).
  33. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
    [PubMed]
  34. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [PubMed]
  35. N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
    [PubMed]

2017 (1)

2016 (2)

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. I. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[PubMed]

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

2015 (3)

W. S. Brocklesby, “Progress in high average power ultrafast lasers,” Eur. Phys. J. Spec. Top. 224(13), 2529–2543 (2015).

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” Sci. Eng. 3(e3), 1–14 (2015).

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

2014 (3)

2013 (3)

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 085305 (2013).

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).

T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue life study of ITO/PET specimens in terms of electrical resistance and stress/strain via cyclic bending tests,” J. Disp. Technol. 9(7), 577–585 (2013).

2012 (1)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 808–816 (2012).

2011 (2)

K. Alzoubi, M. M. Hamasha, S. S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol. 7(11), 593–600 (2011).

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

2010 (1)

O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, “High quality ITO thin films grown by dc and RF sputtering without oxygen,” J. Phys. D Appl. Phys. 43(5), 055402 (2010).

2006 (1)

F. Canova and J. P. Chambaret, “Power amplification for petawatt Ti: Sapphire lasers: new strategies for high fluence pumping,” J. Phys. IV 133, 561–565 (2006).

2005 (1)

T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).

2004 (3)

D. A. Willis, “Thermal mechanisms of laser micromachining of indium tin oxide,” Proc. SPIE 5339, 313–320 (2004).

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[PubMed]

2003 (2)

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21(5), S117–S128 (2003).

H. Lee, J. Seo, Y. Choi, and D. Lee, “The growth of indium-tin-oxide thin films on glass substrates using DC reactive magnetron sputtering,” Vacuum 72(3), 269–276 (2003).

2000 (1)

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).

1999 (1)

T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys. 38(6), 3682–3688 (1999).

1998 (1)

1993 (1)

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal-conductivity of thin amorphous alumina films,” Thin Solid Films 226, 185–190 (1993).

1991 (1)

1979 (1)

W. T. Pawlewicz and R. Busch, “Reactively sputtered oxide optical coatings for inertial confinement fusion laser components,” Thin Solid Films 63(2), 251–256 (1979).

1978 (1)

D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free-carrier absorption in silicon,” IEEE J. Solid-St. Circulation 13(1), 180–187 (1978).

1973 (1)

Adams, J. J.

Alzoubi, K.

K. Alzoubi, M. M. Hamasha, S. S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol. 7(11), 593–600 (2011).

Ancona, A.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).

Aygun, G.

O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, “High quality ITO thin films grown by dc and RF sputtering without oxygen,” J. Phys. D Appl. Phys. 43(5), 055402 (2010).

Baba, T.

T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).

Barna, P. B.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21(5), S117–S128 (2003).

Barnes, A.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Bass, I. L.

S. Elhadj, J. Yoo, R. A. Negres, M. G. Menor, J. J. Adams, N. Shen, D. A. Cross, I. L. Bass, and J. D. Bude, “Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling,” Opt. Mater. Express 7(1), 202–212 (2017).

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

Becker, M. F.

Ben-Yakar, A.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).

Berger, P.

Bierwagen, O.

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 085305 (2013).

Bloembergen, N.

Bonse, J.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).

Brahlek, M.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Brocklesby, W. S.

W. S. Brocklesby, “Progress in high average power ultrafast lasers,” Eur. Phys. J. Spec. Top. 224(13), 2529–2543 (2015).

Bude, J.

Bude, J. D.

Busch, R.

W. T. Pawlewicz and R. Busch, “Reactively sputtered oxide optical coatings for inertial confinement fusion laser components,” Thin Solid Films 63(2), 251–256 (1979).

Byer, R. L.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).

Canova, F.

F. Canova and J. P. Chambaret, “Power amplification for petawatt Ti: Sapphire lasers: new strategies for high fluence pumping,” J. Phys. IV 133, 561–565 (2006).

Carr, C. W.

Chambaret, J. P.

F. Canova and J. P. Chambaret, “Power amplification for petawatt Ti: Sapphire lasers: new strategies for high fluence pumping,” J. Phys. IV 133, 561–565 (2006).

Chan, M. H. W.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Chen, K. T.

T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue life study of ITO/PET specimens in terms of electrical resistance and stress/strain via cyclic bending tests,” J. Disp. Technol. 9(7), 577–585 (2013).

Choi, Y.

H. Lee, J. Seo, Y. Choi, and D. Lee, “The growth of indium-tin-oxide thin films on glass substrates using DC reactive magnetron sputtering,” Vacuum 72(3), 269–276 (2003).

Cross, D. A.

Danson, C.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” Sci. Eng. 3(e3), 1–14 (2015).

Demos, S. G.

Di Niso, F.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).

Eaton, C.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Elhadj, S.

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 808–816 (2012).

Engel-Herbert, R.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Feuer, A.

Freitag, C.

Gaudiuso, C.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).

Gopalan, V.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Graf, T.

Greene, J. E.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21(5), S117–S128 (2003).

Guo, L.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Guss, G.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

Guss, G. M.

Hamasha, M. M.

K. Alzoubi, M. M. Hamasha, S. S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol. 7(11), 593–600 (2011).

Han, C. F.

T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue life study of ITO/PET specimens in terms of electrical resistance and stress/strain via cyclic bending tests,” J. Disp. Technol. 9(7), 577–585 (2013).

Haneef, H. F.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Hillier, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” Sci. Eng. 3(e3), 1–14 (2015).

Hirano, M.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[PubMed]

Hopps, N.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” Sci. Eng. 3(e3), 1–14 (2015).

Hosono, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[PubMed]

Huang, L.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Huang, Z.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Hultman, L.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21(5), S117–S128 (2003).

Jee, Y.

Johnson, M. A.

Kamiya, T.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[PubMed]

Kautek, W.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).

Lee, D.

H. Lee, J. Seo, Y. Choi, and D. Lee, “The growth of indium-tin-oxide thin films on glass substrates using DC reactive magnetron sputtering,” Vacuum 72(3), 269–276 (2003).

Lee, H.

H. Lee, J. Seo, Y. Choi, and D. Lee, “The growth of indium-tin-oxide thin films on glass substrates using DC reactive magnetron sputtering,” Vacuum 72(3), 269–276 (2003).

Lee, J. R. I.

Li, T. C.

T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue life study of ITO/PET specimens in terms of electrical resistance and stress/strain via cyclic bending tests,” J. Disp. Technol. 9(7), 577–585 (2013).

Li, Y.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Lin, J. F.

T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue life study of ITO/PET specimens in terms of electrical resistance and stress/strain via cyclic bending tests,” J. Disp. Technol. 9(7), 577–585 (2013).

Lu, S. S.

K. Alzoubi, M. M. Hamasha, S. S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol. 7(11), 593–600 (2011).

Lugara, P. M.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).

Luo, F.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Luo, Y.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Ma, C.

Matthews, M. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

G. M. Guss, A. K. Sridharan, S. Elhadj, M. A. Johnson, and M. J. Matthews, “Nanoscale surface tracking of laser material processing using phase shifting diffraction interferometry,” Opt. Express 22(12), 14493–14504 (2014).
[PubMed]

Menor, M. G.

Mezzapesa, F. P.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).

Neely, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” Sci. Eng. 3(e3), 1–14 (2015).

Negres, R. A.

Nishizawa, S.

T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys. 38(6), 3682–3688 (1999).

Nomura, K.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[PubMed]

Nostrand, M. C.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

Ohashi, N.

T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys. 38(6), 3682–3688 (1999).

Ohgaki, T.

T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys. 38(6), 3682–3688 (1999).

Ohta, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[PubMed]

Olson, T. Y.

Onuseit, V.

Ozyuzer, L.

O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, “High quality ITO thin films grown by dc and RF sputtering without oxygen,” J. Phys. D Appl. Phys. 43(5), 055402 (2010).

Pawlewicz, W. T.

W. T. Pawlewicz and R. Busch, “Reactively sputtered oxide optical coatings for inertial confinement fusion laser components,” Thin Solid Films 63(2), 251–256 (1979).

Petrov, I.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21(5), S117–S128 (2003).

Podraza, N. J.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Preissler, N.

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 085305 (2013).

Rabe, K. M.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Raman, R. N.

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. I. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

Ramu, A. T.

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 085305 (2013).

Sammakia, B.

K. Alzoubi, M. M. Hamasha, S. S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol. 7(11), 593–600 (2011).

Sato, Y.

T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).

Schmidt, D.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).

Schroder, D. K.

D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free-carrier absorption in silicon,” IEEE J. Solid-St. Circulation 13(1), 180–187 (1978).

Selamet, Y.

O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, “High quality ITO thin films grown by dc and RF sputtering without oxygen,” J. Phys. D Appl. Phys. 43(5), 055402 (2010).

Seo, J.

H. Lee, J. Seo, Y. Choi, and D. Lee, “The growth of indium-tin-oxide thin films on glass substrates using DC reactive magnetron sputtering,” Vacuum 72(3), 269–276 (2003).

Shen, N.

Shigesato, Y.

T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).

Sibillano, T.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).

Speck, J. S.

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 085305 (2013).

Sridharan, A. K.

Stark, I.

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal-conductivity of thin amorphous alumina films,” Thin Solid Films 226, 185–190 (1993).

Stordeur, M.

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal-conductivity of thin amorphous alumina films,” Thin Solid Films 226, 185–190 (1993).

Sturm, H.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).

Suh, J.

Swartz, J. C.

D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free-carrier absorption in silicon,” IEEE J. Solid-St. Circulation 13(1), 180–187 (1978).

Syrowatka, F.

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal-conductivity of thin amorphous alumina films,” Thin Solid Films 226, 185–190 (1993).

Takagi, A.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[PubMed]

Taketoshi, N.

T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).

Tamano, K.

T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).

Thomas, R. N.

D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free-carrier absorption in silicon,” IEEE J. Solid-St. Circulation 13(1), 180–187 (1978).

Tsurumi, T.

T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys. 38(6), 3682–3688 (1999).

Tuna, O.

O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, “High quality ITO thin films grown by dc and RF sputtering without oxygen,” J. Phys. D Appl. Phys. 43(5), 055402 (2010).

Walser, R. M.

Wang, H.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Wang, W.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Weber, R.

Wegner, P. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

Wiedenmann, M.

Willis, D. A.

D. A. Willis, “Thermal mechanisms of laser micromachining of indium tin oxide,” Proc. SPIE 5339, 313–320 (2004).

Yagi, T.

T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).

Yang, S. T.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

Yoo, J.

Yoo, J. H.

Zhang, D.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Zhang, H. T.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Zhang, L.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Zhao, W.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Zhao, X.

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

Zheng, Y.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Zhou, Y.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Adv. Eng. Mater. (1)

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (1)

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).

Eur. Phys. J. Spec. Top. (1)

W. S. Brocklesby, “Progress in high average power ultrafast lasers,” Eur. Phys. J. Spec. Top. 224(13), 2529–2543 (2015).

IEEE J. Solid-St. Circulation (1)

D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free-carrier absorption in silicon,” IEEE J. Solid-St. Circulation 13(1), 180–187 (1978).

J. Appl. Phys. (2)

H. Wang, Z. Huang, D. Zhang, F. Luo, L. Huang, Y. Li, Y. Luo, W. Wang, and X. Zhao, “Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm,” J. Appl. Phys. 110(11), 11311 (2011).

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).

J. Disp. Technol. (2)

T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue life study of ITO/PET specimens in terms of electrical resistance and stress/strain via cyclic bending tests,” J. Disp. Technol. 9(7), 577–585 (2013).

K. Alzoubi, M. M. Hamasha, S. S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol. 7(11), 593–600 (2011).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, “High quality ITO thin films grown by dc and RF sputtering without oxygen,” J. Phys. D Appl. Phys. 43(5), 055402 (2010).

J. Phys. IV (1)

F. Canova and J. P. Chambaret, “Power amplification for petawatt Ti: Sapphire lasers: new strategies for high fluence pumping,” J. Phys. IV 133, 561–565 (2006).

J. Vac. Sci. Technol. A (2)

T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A 23(4), 1180–1186 (2005).

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21(5), S117–S128 (2003).

Jpn. J. Appl. Phys. (1)

T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys. 38(6), 3682–3688 (1999).

Nat. Mater. (1)

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[PubMed]

Nat. Photonics (1)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 808–816 (2012).

Nature (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[PubMed]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Proc. (1)

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugara, “Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel,” Phys. Proc. 41, 691–700 (2013).

Phys. Rev. B (1)

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 085305 (2013).

Proc. SPIE (1)

D. A. Willis, “Thermal mechanisms of laser micromachining of indium tin oxide,” Proc. SPIE 5339, 313–320 (2004).

Sci. Eng. (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” Sci. Eng. 3(e3), 1–14 (2015).

Thin Solid Films (2)

W. T. Pawlewicz and R. Busch, “Reactively sputtered oxide optical coatings for inertial confinement fusion laser components,” Thin Solid Films 63(2), 251–256 (1979).

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal-conductivity of thin amorphous alumina films,” Thin Solid Films 226, 185–190 (1993).

Vacuum (1)

H. Lee, J. Seo, Y. Choi, and D. Lee, “The growth of indium-tin-oxide thin films on glass substrates using DC reactive magnetron sputtering,” Vacuum 72(3), 269–276 (2003).

Other (4)

D. M. Mattox and V. H. Mattox, 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters (Society of Vacuum Coaters, 2007), Chap. 7.

“Single crystal sapphire,” http://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf

“Schott D 263 Thin Borosilicate Glass,” http://www.matweb.com/search/datasheet.aspx?matguid=8df9f3e0106d43818ebe1862e76a1107

M. Fox, Optical Properties of Solids (Oxford, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 ITO films on sapphire, D263, fused silica (FS), and BK7 substrates. (a) Optical micrographs of single-pulse laser damage test sites using a peak laser fluence of 8.5 ± 0.1 J/cm2 on samples with the ITO film-substrate combination indicated. The schematics therein illustrate idealized temperature distributions scaled with the size of the laser damage. The intersecting dashed horizontal lines represents the damage threshold temperature of the ITO film. All images shown have the same scale bar of 10 µm. (b) Measured damage site areas from single-pulse exposures plotted for a range of fluences. Thermal diffusivities of substrates are shown in the legend. The solid and dashed curves represent simulated damaged areas based on a 2000 K threshold isotherm for the top and the bottom of the films, respectively. (c) Damage probability lifetime data plotted as a function of laser fluence for N = 1000 exposures at 10 Hz. The dashed lines are a guide to the eye. The 1/e2 laser beam diameter used was 75 µm.
Fig. 2
Fig. 2 Optical micrographs of single-pulse laser-induced damage sites in (a) ITO film and (b, c) ITO film with a capping layer (all on BK7 substrates) for the laser fluences used as indicated. (a) and (b) use the same scale. All scale bars in (a-c) are 25 µm. (d) Areas of damage sites produced by single-pulse irradiation are plotted over a range of fluences. The inset with a 10 mm scale bar shows a photograph of the sample (ITO.2.B) and the region with Al2O3 capping layer enclosed by the dashed box (A.ITO.2.B). (e) Damage probabilities are plotted as a function of laser fluence for the capped and un-capped ITO film regions on the same sample. The dashed lines are a guide to the eye. The inset shows a micrograph of one of damage sites at a fluence of 1.4 J/cm2. The scale bar is 20 µm. The 1/e2 laser beam diameter used was 168 µm. (f) Simulated Tresca stress values for ITO films on the substrates indicated and with cap layer (squares).
Fig. 3
Fig. 3 Optical images of laser damage of an ITO film on (a, b) sapphire substrate and (c, d) fused silica (FS) substrate. Laser fluence levels are indicated for each damage site. All scale bars are 10 µm. (e) Damage spot area measurements are plotted as a function of laser fluence. (f) Damage probability curves versus laser fluence for ITO films on fused silica and sapphire substrates (N = 1000 pulses). The dashed lines are a guide to the eye. The 1/e2 laser beam diameter used was 168 µm.

Tables (2)

Tables Icon

Table 1 Physical, electrical, and optical properties, and damage threshold (Th) of ITO TCF samples.

Tables Icon

Table 2 TCF materials properties used in temperature simulations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q( r,z,t )= 2αP(t) π r o 2 exp( αz )exp[ 2 ( r r o ) 2 ]
ρ( T ) C P ( T ) T t ( κ( T )T )=Q(r,z,t,T)
σ=ρ 2 u t 2
σ=C:[εβ( T T ref )I]
ε= 1 2 [u+ u T ]

Metrics