Abstract

We study the stability of period-one (P1) oscillations experimentally generated by semiconductor lasers subject to optical injection (OI) and by those subject to optical feedback (OF). With unique advantages of broad frequency tuning range and large sideband rejection ratio, P1 oscillations can be useful in applications such as photonic microwave generation, radio-over-fiber communication, and laser Doppler velocimeter. The stability of the P1 oscillations is critical for these applications, which can be affected by spontaneous emission and fluctuations in both temperature and injection current. Although linewidths of P1 oscillations generated by various schemes have been reported, the mechanisms and roles which each of the OI and the OF play have however not been investigated in detail. To characterize the stability of the P1 oscillations generated by the OI and the OF schemes, we measure the linewidths and linewidth reduction ratios (LRRs) of the P1 oscillations. The OF scheme has a narrowest linewidth of 0.21 ± 0.03 MHz compared to 4.7 ± 0.6 MHz in the OI scheme. In the OF scheme, a much larger region of LRRs higher than 90% is also found. The superior stability of the OF scheme is benefited by the fact that the P1 oscillations in the OF scheme are originated from the undamped relaxation oscillation of a single laser and can be phase-locked to one of its external cavity modes, whereas those in the OI scheme come from two independent lasers which bear no phase relation. Moreover, excess P1 linewidth broadening in the OI scheme caused by fluctuation in injection parameters associated with frequency jitter and relative intensity noise (RIN) is also minimized in the OF scheme.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers

Kai-Hung Lo, Sheng-Kwang Hwang, and Silvano Donati
Opt. Express 22(15) 18648-18661 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
    [Crossref]
  2. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
    [Crossref]
  3. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photon. J. 3(4), 644–650 (2011).
    [Crossref]
  4. S. C. Chen, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref]
  5. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
    [Crossref]
  6. Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38(17), 3355–3358 (2013).
    [Crossref] [PubMed]
  7. S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34(6), 812–814 (2009).
    [Crossref] [PubMed]
  8. C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009).
    [Crossref] [PubMed]
  9. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
    [Crossref]
  10. M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J. 4(5), 1881–1891 (2012).
    [Crossref]
  11. C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement,” Opt. Express 20(18), 20255–20265 (2012).
    [Crossref] [PubMed]
  12. C. H. Cheng, L. C. Lin, and F. Y. Lin, “Self-mixing dual-frequency laser Doppler velocimeter,” Opt. Express 22(3), 3600–3610 (2014).
    [Crossref] [PubMed]
  13. S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quant. Electron. 36(2–3), 293–341 (2012).
    [Crossref]
  14. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
    [Crossref]
  15. C. T. Lin, P. T. Shih, W. J. Jiang, J. Chen, P. C. Peng, and S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17(22), 19749–19756 (2009).
    [Crossref] [PubMed]
  16. M. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, “Modeling the dynamic response of an optically-injected nanostructure diode laser,” IEEE J. Quantum Electron. 47(6), 827–833 (2011).
    [Crossref]
  17. A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photon. J. 5(4), 5900107 (2013).
    [Crossref]
  18. J. P. Zhuang and S. C. Chan, “Tunable photonics microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
    [Crossref] [PubMed]
  19. J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
    [Crossref] [PubMed]
  20. K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22(15), 18648–18661 (2014).
    [Crossref] [PubMed]
  21. B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987).
    [Crossref] [PubMed]
  22. J. Ye, H. Li, and J. G. McInerney, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback,” Phys. Rev. A 47(3), 2249 (1993).
    [Crossref] [PubMed]
  23. S. Y. Ye and J. Ohtsubo, “Experimental investigation of stability enhancement in semiconductor lasers with optical feedback,” Opt. Rev. 5(5), 280–284 (1998).
    [Crossref]
  24. D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
    [Crossref]
  25. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
    [Crossref]
  26. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
    [Crossref]
  27. L. B. Mercer, “1/f noise effects on self-heterodyne linewidth measurement,” IEEE J. Lightwave Technol. 9(4), 485–493 (1991).
    [Crossref]
  28. H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurement using self-heterodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
    [Crossref]
  29. M. Han and A. Wang, “Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement,” Appl. Phy. B 81(1), 53–58 (2008).
    [Crossref]
  30. X. P. Chen, M. Han, Y. Z. Zhu, B. Dong, and A. B. Wang, “Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement,” Appl. Opt. 45(29), 7712–7717 (2006).
    [Crossref] [PubMed]
  31. M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. 27(7), 901–914 (2009).
    [Crossref]
  32. T. Sutili, R. C. Figueiredo, and E. Condorti, “Laser linewidth and phase noise evaluation using heterodyne offline signal processing,” J. Lightwave Technol. 34(21), 4933–4940 (2016).
    [Crossref]
  33. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (3)

2013 (4)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photon. J. 5(4), 5900107 (2013).
[Crossref]

J. P. Zhuang and S. C. Chan, “Tunable photonics microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38(17), 3355–3358 (2013).
[Crossref] [PubMed]

2012 (4)

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J. 4(5), 1881–1891 (2012).
[Crossref]

C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement,” Opt. Express 20(18), 20255–20265 (2012).
[Crossref] [PubMed]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quant. Electron. 36(2–3), 293–341 (2012).
[Crossref]

2011 (2)

M. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, “Modeling the dynamic response of an optically-injected nanostructure diode laser,” IEEE J. Quantum Electron. 47(6), 827–833 (2011).
[Crossref]

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photon. J. 3(4), 644–650 (2011).
[Crossref]

2010 (1)

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

2009 (4)

2008 (1)

M. Han and A. Wang, “Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement,” Appl. Phy. B 81(1), 53–58 (2008).
[Crossref]

2007 (1)

2006 (1)

2004 (2)

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

1998 (2)

S. Y. Ye and J. Ohtsubo, “Experimental investigation of stability enhancement in semiconductor lasers with optical feedback,” Opt. Rev. 5(5), 280–284 (1998).
[Crossref]

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurement using self-heterodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

1993 (1)

J. Ye, H. Li, and J. G. McInerney, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback,” Phys. Rev. A 47(3), 2249 (1993).
[Crossref] [PubMed]

1992 (1)

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

1991 (1)

L. B. Mercer, “1/f noise effects on self-heterodyne linewidth measurement,” IEEE J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

1987 (1)

1985 (1)

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Adams, M. J.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photon. J. 5(4), 5900107 (2013).
[Crossref]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Broberg, B.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Bruun, M.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Chan, S. C.

J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
[Crossref] [PubMed]

J. P. Zhuang and S. C. Chan, “Tunable photonics microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

Chen, H. F.

Chen, J.

Chen, S. C.

Chen, X. P.

Cheng, C. H.

Chi, S.

Christensen, E. L.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Condorti, E.

Cui, C.

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009).
[Crossref] [PubMed]

Dahmani, B.

Den Boef, A.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Donati, S.

Dong, B.

Drullinger, R.

Figueiredo, R. C.

Fu, X.

Gliese, U.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Han, M.

M. Han and A. Wang, “Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement,” Appl. Phy. B 81(1), 53–58 (2008).
[Crossref]

X. P. Chen, M. Han, Y. Z. Zhu, B. Dong, and A. B. Wang, “Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement,” Appl. Opt. 45(29), 7712–7717 (2006).
[Crossref] [PubMed]

Henning, I. D.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photon. J. 5(4), 5900107 (2013).
[Crossref]

Hollberg, L.

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Hung, Y. H.

Hurtado, A.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photon. J. 5(4), 5900107 (2013).
[Crossref]

Hwang, S. K.

Jiang, W. J.

Juan, Y. S.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photon. J. 3(4), 644–650 (2011).
[Crossref]

Kaivola, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurement using self-heterodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

M. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, “Modeling the dynamic response of an optically-injected nanostructure diode laser,” IEEE J. Quantum Electron. 47(6), 827–833 (2011).
[Crossref]

Lee, C. W.

Lenstra, D.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Lester, L. F.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photon. J. 5(4), 5900107 (2013).
[Crossref]

M. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, “Modeling the dynamic response of an optically-injected nanostructure diode laser,” IEEE J. Quantum Electron. 47(6), 827–833 (2011).
[Crossref]

Li, H.

J. Ye, H. Li, and J. G. McInerney, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback,” Phys. Rev. A 47(3), 2249 (1993).
[Crossref] [PubMed]

Lin, C. T.

Lin, C. Y.

Lin, F. Y.

Lin, L. C.

Lin, T. W.

Lindgren, S.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Liu, J. M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

S. C. Chen, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Lo, K. H.

Locke, T.

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J. 4(5), 1881–1891 (2012).
[Crossref]

Ludvigsen, H.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurement using self-heterodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

McInerney, J. G.

J. Ye, H. Li, and J. G. McInerney, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback,” Phys. Rev. A 47(3), 2249 (1993).
[Crossref] [PubMed]

Mercer, L. B.

L. B. Mercer, “1/f noise effects on self-heterodyne linewidth measurement,” IEEE J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

Naderi, N. A.

M. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, “Modeling the dynamic response of an optically-injected nanostructure diode laser,” IEEE J. Quantum Electron. 47(6), 827–833 (2011).
[Crossref]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Ohtsubo, J.

S. Y. Ye and J. Ohtsubo, “Experimental investigation of stability enhancement in semiconductor lasers with optical feedback,” Opt. Rev. 5(5), 280–284 (1998).
[Crossref]

Peng, P. C.

Pochet, M.

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J. 4(5), 1881–1891 (2012).
[Crossref]

M. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, “Modeling the dynamic response of an optically-injected nanostructure diode laser,” IEEE J. Quantum Electron. 47(6), 827–833 (2011).
[Crossref]

Shih, P. T.

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Sutili, T.

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Taylor, M. G.

Tossavainen, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurement using self-heterodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J. 4(5), 1881–1891 (2012).
[Crossref]

Verbeek, B.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

Wang, A.

M. Han and A. Wang, “Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement,” Appl. Phy. B 81(1), 53–58 (2008).
[Crossref]

Wang, A. B.

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

Ye, J.

J. Ye, H. Li, and J. G. McInerney, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback,” Phys. Rev. A 47(3), 2249 (1993).
[Crossref] [PubMed]

Ye, S. Y.

S. Y. Ye and J. Ohtsubo, “Experimental investigation of stability enhancement in semiconductor lasers with optical feedback,” Opt. Rev. 5(5), 280–284 (1998).
[Crossref]

Zhu, Y. Z.

Zhuang, J. P.

Appl. Opt. (1)

Appl. Phy. B (1)

M. Han and A. Wang, “Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement,” Appl. Phy. B 81(1), 53–58 (2008).
[Crossref]

IEEE J. Lightwave Technol. (1)

L. B. Mercer, “1/f noise effects on self-heterodyne linewidth measurement,” IEEE J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

IEEE J. Quantum Electron. (4)

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985).
[Crossref]

M. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, “Modeling the dynamic response of an optically-injected nanostructure diode laser,” IEEE J. Quantum Electron. 47(6), 827–833 (2011).
[Crossref]

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

IEEE Photon. J. (3)

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photon. J. 5(4), 5900107 (2013).
[Crossref]

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J. 4(5), 1881–1891 (2012).
[Crossref]

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photon. J. 3(4), 644–650 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (1)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurement using self-heterodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Opt. Rev. (1)

S. Y. Ye and J. Ohtsubo, “Experimental investigation of stability enhancement in semiconductor lasers with optical feedback,” Opt. Rev. 5(5), 280–284 (1998).
[Crossref]

Phys. Rev. A (1)

J. Ye, H. Li, and J. G. McInerney, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback,” Phys. Rev. A 47(3), 2249 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

Prog. Quant. Electron. (1)

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quant. Electron. 36(2–3), 293–341 (2012).
[Crossref]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup of the P1 generation with the OI scheme. ML: master laser; SL: slave laser; RL1: reference laser; BS: beam splitter; ATT: variable attenuator; PM: power meter; FC: fiber collimator; PD: high-speed photodetector; ESA: electrical spectrum analyzer; OSA: optical spectrum analyzer; ISO: isolator; PC: polarization controller.
Fig. 2
Fig. 2 State diagram of the OI scheme for different ξi and Δf. S: stably locked region; P1: period-one oscillation; P2: period-two oscillation; CO: chaotic oscillation.
Fig. 3
Fig. 3 (a) Optical and (b) electrical spectra of the SL subject to optical injection at (ξi, Δf) = (0.24, −2.21 GHz).
Fig. 4
Fig. 4 Oscillation frequencies fP1 and linewidths ΔνP1 of P1 for different detuning frequencies at ξi = (a)(d) 0.13, (b)(e) 0.15, and (c)(f) 0.19, respectively. The black dashed and solid lines are the optical linewidths of the ML at free-running (Δν0,ML) and after injection (ΔνML), and the red dashed and solid lines are the optical linewidths of the SL at free-running (Δν0,SL) and under injection (ΔνSL), respectively. S: stable locking state.
Fig. 5
Fig. 5 Experimental setup of the P1 generation with the OF scheme. LD: laser diode; BS: beam splitter; ATT: variable attenuator; PM: power meter; FC: fiber collimator; PD: high-speed photodetector; ESA: electrical spectrum analyzer; OSA: optical spectrum analyzer; ISO: isolator; RL2: reference laser; PC: polarization controller.
Fig. 6
Fig. 6 State diagram of the OF scheme for different ξf and Lext. CO: chaotic oscillation; QP: quasi-period oscillation; P1: period-one oscillation; S: stable states.
Fig. 7
Fig. 7 (a) Optical and (b) electrical spectra of the LD subject to optical feedback at (ξf, Lext) = (0.014, 109 mm).
Fig. 8
Fig. 8 Oscillation frequencies fP1 and linewidths ΔνP1 (blue dots and curves) of P1 for different Lext at ξf = (a)(d) 0.011, (b)(e) 0.015, and (c)(f) 0.017, respectively. The black and red curves are the linewidths of the PW (ΔνPW) and the SW (ΔνSW) and black dashed line is the linewidth of the SL at free-running (Δν0), respectively.
Fig. 9
Fig. 9 Mappings of the P1 frequency, linewidth, and power for different injection and feedback parameters generated with the (a)–(c) OI and (d)–(f) OF schemes, respectively. DIR: detuning-insensitive region; MLP: minimum-linewidth point; Hopf: Hopf bifurcation.
Fig. 10
Fig. 10 Mappings of linewidth reduction ratios for the P1 oscillations generated with the (a) OI and (b) OF schemes.

Metrics