Abstract

The optimisation of span length when designing optical communication systems is important from both performance and cost perspectives. In this paper, the optimisation of inter-amplifier spacing and the potential increase of span length at fixed information rates in optical communication systems with practically feasible nonlinearity compensation schemes have been investigated. It is found that in DP-16QAM, DP-64QAM and DP-256QAM systems with practical transceiver noise limitations, single-channel digital backpropagation can allow a 50% reduction in the number of amplifiers without sacrificing information rates compared to systems with optimal span lengths and linear compensation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems

Tianhua Xu, Nikita A. Shevchenko, Domaniç Lavery, Daniel Semrau, Gabriele Liga, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Express 25(4) 3311-3326 (2017)

On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission

Gabriele Liga, Tianhua Xu, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Express 22(24) 30053-30062 (2014)

Low complexity digital backpropagation for high baud subcarrier-multiplexing systems

Fangyuan Zhang, Qunbi Zhuge, Meng Qiu, and David V. Plant
Opt. Express 24(15) 17027-17040 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. R. Dar, M. Shtaif, and M. Feder, “New bounds on the capacity of the nonlinear fiber-optic channel,” Opt. Lett. 39(2), 398–401 (2014).
    [Crossref] [PubMed]
  3. A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol. 30(12), 2011–2024 (2012).
    [Crossref]
  4. E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  5. P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Philos Trans A Math Phys Eng Sci 374(2062), 20140440 (2016).
    [Crossref] [PubMed]
  6. D. Semrau, T. Xu, N. A. Shevchenko, M. Paskov, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimates in optically amplified transmission systems using nonlinearity compensation and probabilistic shaping,” Opt. Lett. 42(1), 121–124 (2017).
    [Crossref] [PubMed]
  7. T. Fehenberger and N. Hanik, “Digital back-propagation of a superchannel: achievable rates and adaptation of the GN model,” in Proceedings of European Conference on Optical Communication (ECOC), (Institute of Electrical and Electronics Engineers, 2014), paper We.3.3.6.
    [Crossref]
  8. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  9. J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Ademiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-Atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-Gb/s 16-QAM,” in Proceedings of Optical Fiber Communications Conference, (Optical Society of America, 2017), paper Th5B.3.
    [Crossref]
  10. J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM With a SE of 4 b/s/Hz,” J. Lightwave Technol. 31(4), 515–522 (2013).
    [Crossref]
  11. N. J. Doran and A. D. Ellis, “Minimising total energy requirements in amplified links by optimising amplifier spacing,” Opt. Express 22(16), 19810–19817 (2014).
    [Crossref] [PubMed]
  12. N. J. Doran and A. D. Ellis, “Optical link design for minimum power consumption and maximum capacity,” in Proceedings of European Conference on Optical Communication (ECOC), (Institute of Electrical and Electronics Engineers, 2014), paper P4.9.
  13. J. D. Ania-Castañón, I. O. Nasieva, S. K. Turitsyn, N. Brochier, and E. Pincemin, “Optimal span length in high-speed transmission systems with hybrid Raman-erbium-doped fiber amplification,” Opt. Lett. 30(1), 23–25 (2005).
    [Crossref] [PubMed]
  14. W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.
  15. T. Fehenberger, A. Alvarado, P. Bayvel, and N. Hanik, “On achievable rates for long-haul fiber-optic communications,” Opt. Express 23(7), 9183–9191 (2015).
    [Crossref] [PubMed]
  16. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” J. Lightwave Technol. 33(2), 459–473 (2015).
    [Crossref]
  17. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express 22(12), 14199–14211 (2014).
    [Crossref] [PubMed]
  18. L. Beygi, N. V. Irukulapati, E. Agrell, P. Johannisson, M. Karlsson, H. Wymeersch, P. Serena, and A. Bononi, “On nonlinearly-induced noise in single-channel optical links with digital backpropagation,” Opt. Express 21(22), 26376–26386 (2013).
    [Crossref] [PubMed]
  19. T. Xu, N. A. Shevchenko, D. Lavery, D. Semrau, G. Liga, A. Alvarado, R. I. Killey, and P. Bayvel, “Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems,” Opt. Express 25(4), 3311–3326 (2017).
    [Crossref] [PubMed]
  20. G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulations,” IEEE Photonics Technol. Lett. 12(5), 489–491 (2000).
    [Crossref]
  21. G. P. Agrawal, Fiber-optic Communication systems, 4th ed. (John Wiley & Sons, Inc., 2010).
  22. J. Delavaux and J. Nagel, “Multi-stage erbium-doped fiber amplifier designs,” J. Lightwave Technol. 13(5), 703–720 (1995).
    [Crossref]
  23. H. Masuda and A. Takada, “High gain two-stage amplification with erbium-doped fibre amplifier,” Electron. Lett. 26(10), 661–662 (1990).
    [Crossref]
  24. T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
    [Crossref] [PubMed]
  25. R. Asif, C. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284(24), 5673–5677 (2011).
    [Crossref]
  26. L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Express 19(7), 5953–5959 (2011).
    [Crossref] [PubMed]
  27. A. Napoli, Z. Maalej, V. Sleiffer, M. Kuschnerov, D. Rafique, E. Timmers, B. Spinnler, T. Rahman, L. Coelho, and N. Hanik, “Reduced complexity digital back-propagation methods for optical communication systems,” J. Lightwave Technol. 32(7), 1351–1362 (2014).
    [Crossref]
  28. L. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
    [Crossref]
  29. D. Rafique, “Fiber nonlinearity compensation: commercial applications and complexity analysis,” J. Lightwave Technol. 34(2), 544–553 (2016).
    [Crossref]
  30. L. Galdino, D. Semrau, D. Lavery, G. Saavedra, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “On the limits of digital back-propagation in the presence of transceiver noise,” Opt. Express 25(4), 4564–4578 (2017).
    [Crossref] [PubMed]
  31. L. Szczecinski and A. Alvarado, Bit-Interleaved Coded Modulation: Fundamentals, Analysis and Design. (John Wiley& Sons, Inc., 2015).
  32. G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightwave Technol. 35(1), 113–123 (2017).
    [Crossref]
  33. R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
    [Crossref]
  34. M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” J. Lightwave Technol. 31(23), 3839–3852 (2013).
    [Crossref]
  35. A. Yariv, “Signal-to-noise considerations in fiber links with periodic or distributed optical amplification,” Opt. Lett. 15(19), 1064–1066 (1990).
    [Crossref] [PubMed]

2017 (4)

2016 (3)

D. Rafique, “Fiber nonlinearity compensation: commercial applications and complexity analysis,” J. Lightwave Technol. 34(2), 544–553 (2016).
[Crossref]

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Philos Trans A Math Phys Eng Sci 374(2062), 20140440 (2016).
[Crossref] [PubMed]

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

2015 (2)

2014 (5)

2013 (3)

2012 (1)

2011 (3)

2010 (2)

2008 (1)

2005 (1)

2000 (1)

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulations,” IEEE Photonics Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

1995 (1)

J. Delavaux and J. Nagel, “Multi-stage erbium-doped fiber amplifier designs,” J. Lightwave Technol. 13(5), 703–720 (1995).
[Crossref]

1990 (2)

H. Masuda and A. Takada, “High gain two-stage amplification with erbium-doped fibre amplifier,” Electron. Lett. 26(10), 661–662 (1990).
[Crossref]

A. Yariv, “Signal-to-noise considerations in fiber links with periodic or distributed optical amplification,” Opt. Lett. 15(19), 1064–1066 (1990).
[Crossref] [PubMed]

Agrell, E.

Alvarado, A.

Ania-Castañón, J. D.

Asif, R.

R. Asif, C. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284(24), 5673–5677 (2011).
[Crossref]

Bayvel, P.

Benedetto, S.

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulations,” IEEE Photonics Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

Beygi, L.

Bononi, A.

Bosco, G.

Brochier, N.

Carena, A.

Chien, H.-C.

Coelho, L.

Curri, V.

Czegledi, C. B.

Dar, R.

Delavaux, J.

J. Delavaux and J. Nagel, “Multi-stage erbium-doped fiber amplifier designs,” J. Lightwave Technol. 13(5), 703–720 (1995).
[Crossref]

Dong, Z.

Doran, N. J.

Downie, J.

W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.

Du, L.

L. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

Ellis, A. D.

L. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

N. J. Doran and A. D. Ellis, “Minimising total energy requirements in amplified links by optimising amplifier spacing,” Opt. Express 22(16), 19810–19817 (2014).
[Crossref] [PubMed]

Essiambre, R.-J.

Feder, M.

Fehenberger, T.

Forestieri, E.

Forghieri, F.

Foschini, G.

Friberg, A. T.

Galdino, L.

Gaudino, R.

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulations,” IEEE Photonics Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

Goebel, B.

Gunkel, M.

Hanik, N.

Huo, D.

Ip, E.

Irukulapati, N. V.

Jacobsen, G.

Jia, Z.

Jiang, Y.

Johannisson, P.

Kahn, J.

Kaliteevskiy, N.

W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.

Karlsson, M.

Killey, R. I.

Kramer, G.

Kuschnerov, M.

Lavery, D.

Li, G.

Li, J.

Li, X.

Liga, G.

Lin, C.

R. Asif, C. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284(24), 5673–5677 (2011).
[Crossref]

Lowery, A.

L. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

Maalej, Z.

Maher, R.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Philos Trans A Math Phys Eng Sci 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Masuda, H.

H. Masuda and A. Takada, “High gain two-stage amplification with erbium-doped fibre amplifier,” Electron. Lett. 26(10), 661–662 (1990).
[Crossref]

Mayer, H.

Mecozzi, A.

Nagel, J.

J. Delavaux and J. Nagel, “Multi-stage erbium-doped fiber amplifier designs,” J. Lightwave Technol. 13(5), 703–720 (1995).
[Crossref]

Napoli, A.

Nasieva, I. O.

Paskov, M.

Pincemin, E.

Poggiolini, P.

Popov, S.

Prati, G.

Rafique, D.

Rahman, T.

Roudas, I.

W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.

Rukosueva, M.

W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.

Saavedra, G.

Schippel, A.

Schmauss, B.

R. Asif, C. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284(24), 5673–5677 (2011).
[Crossref]

Secondini, M.

Semrau, D.

Serena, P.

Shevchenko, N. A.

Shtaif, M.

Sleiffer, V.

Spinnler, B.

Sterlingov, P.

W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.

Takada, A.

H. Masuda and A. Takada, “High gain two-stage amplification with erbium-doped fibre amplifier,” Electron. Lett. 26(10), 661–662 (1990).
[Crossref]

Ten, S.

W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.

Timmers, E.

Turitsyn, S. K.

Vanin, E.

Wagner, P.

Wang, K.

Winzer, P. J.

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

Wood, W. A.

W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.

Wymeersch, H.

Xu, T.

Yariv, A.

Yu, J.

Zhang, Y.

Zhu, L.

Electron. Lett. (1)

H. Masuda and A. Takada, “High gain two-stage amplification with erbium-doped fibre amplifier,” Electron. Lett. 26(10), 661–662 (1990).
[Crossref]

IEEE Photonics Technol. Lett. (2)

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulations,” IEEE Photonics Technol. Lett. 12(5), 489–491 (2000).
[Crossref]

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

IEEE Signal Process. Mag. (1)

L. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

J. Lightwave Technol. (11)

D. Rafique, “Fiber nonlinearity compensation: commercial applications and complexity analysis,” J. Lightwave Technol. 34(2), 544–553 (2016).
[Crossref]

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” J. Lightwave Technol. 31(23), 3839–3852 (2013).
[Crossref]

A. Napoli, Z. Maalej, V. Sleiffer, M. Kuschnerov, D. Rafique, E. Timmers, B. Spinnler, T. Rahman, L. Coelho, and N. Hanik, “Reduced complexity digital back-propagation methods for optical communication systems,” J. Lightwave Technol. 32(7), 1351–1362 (2014).
[Crossref]

G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightwave Technol. 35(1), 113–123 (2017).
[Crossref]

J. Delavaux and J. Nagel, “Multi-stage erbium-doped fiber amplifier designs,” J. Lightwave Technol. 13(5), 703–720 (1995).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol. 30(12), 2011–2024 (2012).
[Crossref]

E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM With a SE of 4 b/s/Hz,” J. Lightwave Technol. 31(4), 515–522 (2013).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” J. Lightwave Technol. 33(2), 459–473 (2015).
[Crossref]

Opt. Commun. (1)

R. Asif, C. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284(24), 5673–5677 (2011).
[Crossref]

Opt. Express (8)

L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Express 19(7), 5953–5959 (2011).
[Crossref] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[Crossref] [PubMed]

T. Fehenberger, A. Alvarado, P. Bayvel, and N. Hanik, “On achievable rates for long-haul fiber-optic communications,” Opt. Express 23(7), 9183–9191 (2015).
[Crossref] [PubMed]

L. Galdino, D. Semrau, D. Lavery, G. Saavedra, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “On the limits of digital back-propagation in the presence of transceiver noise,” Opt. Express 25(4), 4564–4578 (2017).
[Crossref] [PubMed]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express 22(12), 14199–14211 (2014).
[Crossref] [PubMed]

L. Beygi, N. V. Irukulapati, E. Agrell, P. Johannisson, M. Karlsson, H. Wymeersch, P. Serena, and A. Bononi, “On nonlinearly-induced noise in single-channel optical links with digital backpropagation,” Opt. Express 21(22), 26376–26386 (2013).
[Crossref] [PubMed]

T. Xu, N. A. Shevchenko, D. Lavery, D. Semrau, G. Liga, A. Alvarado, R. I. Killey, and P. Bayvel, “Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems,” Opt. Express 25(4), 3311–3326 (2017).
[Crossref] [PubMed]

N. J. Doran and A. D. Ellis, “Minimising total energy requirements in amplified links by optimising amplifier spacing,” Opt. Express 22(16), 19810–19817 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Philos Trans A Math Phys Eng Sci (1)

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Philos Trans A Math Phys Eng Sci 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Other (6)

T. Fehenberger and N. Hanik, “Digital back-propagation of a superchannel: achievable rates and adaptation of the GN model,” in Proceedings of European Conference on Optical Communication (ECOC), (Institute of Electrical and Electronics Engineers, 2014), paper We.3.3.6.
[Crossref]

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Ademiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-Atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-Gb/s 16-QAM,” in Proceedings of Optical Fiber Communications Conference, (Optical Society of America, 2017), paper Th5B.3.
[Crossref]

W. A. Wood, S. Ten, I. Roudas, P. Sterlingov, N. Kaliteevskiy, J. Downie, and M. Rukosueva, “Relative importance of optical fiber effective area and attenuation in span length optimization of ultra-long 100 Gbps PM-QPSK systems,” in Proceedings of SubOptic conference (2013), paper TU1C–3.

N. J. Doran and A. D. Ellis, “Optical link design for minimum power consumption and maximum capacity,” in Proceedings of European Conference on Optical Communication (ECOC), (Institute of Electrical and Electronics Engineers, 2014), paper P4.9.

L. Szczecinski and A. Alvarado, Bit-Interleaved Coded Modulation: Fundamentals, Analysis and Design. (John Wiley& Sons, Inc., 2015).

G. P. Agrawal, Fiber-optic Communication systems, 4th ed. (John Wiley & Sons, Inc., 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the Nyquist-spaced optical fibre communication system using EDC and single-channel DBP. PBS: polarisation beam splitter, PBC: polarisation beam combiner, LO: local oscillator, ADC: analogue-to-digital converter, MI: mutual information, Nch: number of WDM channels, N: number of spans.
Fig. 2
Fig. 2 MI as a function of SNR for DP-QPSK, DP-16QAM, DP-64QAM and DP-256QAM based on the assumption of an AWGN channel model.
Fig. 3
Fig. 3 MI versus span length for different modulation formats at 2400 km total reach in EDC and single-channel DBP schemes. Span lengths that achieve maximum MI are encircled with black dashed line.
Fig. 4
Fig. 4 MI versus span length for DP-64QAM at varied total transmission distance with EDC and single-channel DBP.
Fig. 5
Fig. 5 Span length as a function of target mutual information at different total system reach for DP-16QAM (a), DP-64QAM (b), and DP-256QAM (c) with single-channel DBP and EDC. The maximum MI values in linear compensation schemes and the span length at which single-channel DBP achieves them are indicated.

Tables (2)

Tables Icon

Table 1 Transmission system parameters

Tables Icon

Table 2 DP-16QAM optimum launch powers for different span lengths at total distances of 2400, 4800 and 7200 km with both EDC and single-channel DBP

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Y=X+Z
σ z 2 =Var[ | Z | ]=Ε[ | YX | 2 ]
SNR= σ x 2 σ z 2 .
MI= 2 M xX C P Y|X ( y|x ) log 2 p Y|X ( y|x ) 1 M x X p Y|X ( y| x ) dy,
p Y|X ( y|x )= 1 π σ z 2 exp( | yx | 2 σ z 2 ).

Metrics