Abstract

We report on a room-temperature Kerr-lens mode-locked Cr:ZnSe femtosecond laser operating at around 2.4 μm emission wavelength. Self-starting nearly transform-limited pulse trains with a minimum duration of 47 fs, corresponding to six optical cycles, and average output power of 0.25 W are obtained with repetition frequencies in the range from 140 to 300 MHz. The femtosecond pulse train is characterized by high-spectral purity and low time jitter.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

4 October 2017: A typographical correction was made to the author listing.


OSA Recommended Articles
Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator

Nathalie Nagl, Sebastian Gröbmeyer, Vladimir Pervak, Ferenc Krausz, Oleg Pronin, and Ka Fai Mak
Opt. Express 27(17) 24445-24454 (2019)

Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 µm

Sergey Vasilyev, Igor Moskalev, Mike Mirov, Sergey Mirov, and Valentin Gapontsev
Opt. Express 24(2) 1616-1623 (2016)

14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs
Opt. Lett. 22(22) 1716-1718 (1997)

References

  • View by:
  • |
  • |
  • |

  1. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR lasers based on Cr and Fe-Doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).
    [Crossref]
  2. I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1601519 (2015).
    [Crossref]
  3. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mat. Express 7, 2636–2650 (2017).
    [Crossref]
  4. I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf., Long Beach, CA, USA, 2006, Paper CMQ2.
  5. E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in Proceedings of CLEO/Europe 2009, Munich, Germany, June 15–19, 2009, p. CF1.3.
  6. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
    [Crossref] [PubMed]
  7. E. Slobodchikov and P. F. Moulton, “1-GW-peak-power, Cr:ZnSe laser,” Conf. Lasers Electro-Opt., Baltimore, MD, USA, 2011.
  8. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106, 887–892 (2012).
    [Crossref]
  9. S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22, 5118–5123 (2014).
    [Crossref] [PubMed]
  10. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  11. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40, 5054–5057 (2015).
    [Crossref] [PubMed]
  12. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μ m,” Opt. Express 24, 1616–1623 (2016).
    [Crossref] [PubMed]
  13. R. Szipöcs, C. Spielmann, F. Krausz, and K. Ferencz,“Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203, (1994).
    [Crossref] [PubMed]
  14. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
    [Crossref] [PubMed]
  15. E. Sorokin and I. T. Sorokina, “Femtosecond Operation and Random Quasi-Phase-Matched Self-Doubling of Ceramic Cr:ZnSe Laser,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuGG2.
  16. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B: Photophys. Laser Chem. 39, 201–217 (1986).
    [Crossref]
  17. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H. A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
    [Crossref]

2017 (1)

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mat. Express 7, 2636–2650 (2017).
[Crossref]

2016 (1)

2015 (3)

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40, 5054–5057 (2015).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR lasers based on Cr and Fe-Doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1601519 (2015).
[Crossref]

2014 (1)

2012 (2)

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106, 887–892 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

2009 (1)

2004 (1)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

1997 (1)

1994 (1)

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B: Photophys. Laser Chem. 39, 201–217 (1986).
[Crossref]

Bachor, H. A.

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Cankaya, H.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106, 887–892 (2012).
[Crossref]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
[Crossref] [PubMed]

Carrig, T.

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf., Long Beach, CA, USA, 2006, Paper CMQ2.

Cizmeciyan, M. N.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106, 887–892 (2012).
[Crossref]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
[Crossref] [PubMed]

Fedorov, V.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR lasers based on Cr and Fe-Doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).
[Crossref]

Ferencz, K.

Gapontsev, V.

Haïdar, R.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Harb, C. C.

Huntington, E. H.

Krausz, F.

Kupecek, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Kurt, A.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106, 887–892 (2012).
[Crossref]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
[Crossref] [PubMed]

Lemasson, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Martyshkin, D.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR lasers based on Cr and Fe-Doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).
[Crossref]

McClelland, D. E.

Mirov, M.

Mirov, S.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mat. Express 7, 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μ m,” Opt. Express 24, 1616–1623 (2016).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40, 5054–5057 (2015).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR lasers based on Cr and Fe-Doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).
[Crossref]

Moskalev, I.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mat. Express 7, 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μ m,” Opt. Express 24, 1616–1623 (2016).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40, 5054–5057 (2015).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR lasers based on Cr and Fe-Doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).
[Crossref]

Moulton, P. F.

E. Slobodchikov and P. F. Moulton, “1-GW-peak-power, Cr:ZnSe laser,” Conf. Lasers Electro-Opt., Baltimore, MD, USA, 2011.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Ralph, T. C.

Rosencher, E.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Sennaroglu, A.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106, 887–892 (2012).
[Crossref]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
[Crossref] [PubMed]

Slobodchikov, E.

E. Slobodchikov and P. F. Moulton, “1-GW-peak-power, Cr:ZnSe laser,” Conf. Lasers Electro-Opt., Baltimore, MD, USA, 2011.

Smolski, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mat. Express 7, 2636–2650 (2017).
[Crossref]

Sorokin, E.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1601519 (2015).
[Crossref]

E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in Proceedings of CLEO/Europe 2009, Munich, Germany, June 15–19, 2009, p. CF1.3.

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf., Long Beach, CA, USA, 2006, Paper CMQ2.

E. Sorokin and I. T. Sorokina, “Femtosecond Operation and Random Quasi-Phase-Matched Self-Doubling of Ceramic Cr:ZnSe Laser,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuGG2.

Sorokina, I. T.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1601519 (2015).
[Crossref]

E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in Proceedings of CLEO/Europe 2009, Munich, Germany, June 15–19, 2009, p. CF1.3.

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf., Long Beach, CA, USA, 2006, Paper CMQ2.

E. Sorokin and I. T. Sorokina, “Femtosecond Operation and Random Quasi-Phase-Matched Self-Doubling of Ceramic Cr:ZnSe Laser,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuGG2.

Spielmann, C.

Szipöcs, R.

Vasilyev, S.

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B: Photophys. Laser Chem. 39, 201–217 (1986).
[Crossref]

Appl. Phys. B (1)

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106, 887–892 (2012).
[Crossref]

Appl. Phys. B: Photophys. Laser Chem. (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B: Photophys. Laser Chem. 39, 201–217 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR lasers based on Cr and Fe-Doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1601519 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Nature (1)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mat. Express (1)

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mat. Express 7, 2636–2650 (2017).
[Crossref]

Other (4)

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf., Long Beach, CA, USA, 2006, Paper CMQ2.

E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in Proceedings of CLEO/Europe 2009, Munich, Germany, June 15–19, 2009, p. CF1.3.

E. Slobodchikov and P. F. Moulton, “1-GW-peak-power, Cr:ZnSe laser,” Conf. Lasers Electro-Opt., Baltimore, MD, USA, 2011.

E. Sorokin and I. T. Sorokina, “Femtosecond Operation and Random Quasi-Phase-Matched Self-Doubling of Ceramic Cr:ZnSe Laser,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuGG2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Astigmatically compensated asymmetric linear cavity configuration. HR CM: high-reflectivity chirped mirror; OC: output coupler; ROC: radius of curvature; SHG: second harmonic generation pulse train. (b) GDD spectra due to the 3-mm thick ZnSe policrystal and HR CM (single mirror). (c) Output power versus incident pump power in both CW and KLM (300-MHz repetition frequency) regimes.
Fig. 2
Fig. 2 Spectrum (a) and interferometric autocorrelation (b) of the 150-MHz pulse trains generated by the KLM Cr:ZnSe. The red curve in the spectrum represents the best interpolation for a sech2 pulse profile leading to a transform-limited pulse width of 37 fs (less than five optical cycles) and a 10 dB bandwidth exceeding 330 nm (18 THz). The blue curve in the autocorrelation corresponds to the intensity autocorrelation profile.
Fig. 3
Fig. 3 Spectrum (a) and intensity autocorrelation (b) of the second-harmonic pulse trains generated by the KLM Cr:ZnSe.
Fig. 4
Fig. 4 RF spectrum of the mode-locking pulses measured (a) in a 900-MHz frequency span (3-MHz resolution bandwidth) and (b) at around the fundamental pulse repetition frequency (3-kHz resolution bandwidth). (c) Power spectral density of the phase noise at the fundamental repetition frequency versus the Fourier frequency.
Fig. 5
Fig. 5 (a) Relative intensity noise spectral density of both the Er-pump and KLM Cr:ZnSe lasers. Dashed curves represent the theoretical prediction of the RIN spectra. (b) Difference between the RIN spectra of the KLM Cr:ZnSe and Er-fiber pump lasers. Circles represent the difference between the peak values located at the frequency of 3.7 MHz and its harmonics (multilongitudinal mode-beating of the Er-fiber laser). The red line represents the best data interpolation with the transfer function of the KLM Cr:ZnSe system defined by eq. 1 (K0=2.5; fz=45 kHz; f0=260 kHz; δ=0.4).

Tables (1)

Tables Icon

Table 1 Pulse train characteristics of KLM Cr:ZnSe laser at different repetition frequencies.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H Cr ( f ) = K 0 ( 1 + f 2 f z 2 ) [ ( 1 f 2 f 0 2 ) 2 + 2 δ f 2 f 0 2 ]

Metrics