Abstract

A novel active region design based on a type-II InGaAs/GaAsSbBi quantum wells on GaAs substrate is proposed and studied in this work. The band structures of the InGaAs/GaAsSbBi type-II quantum wells are studied based on a self-consistent 14-band k·p model. The electronic and optical properties of dilute-bismide InGaAs/GaAsSbBi type-II quantum well structures are investigated theoretically. Moreover, the room temperature gain characteristics of the laser active region are studied with different Bi composition. The theoretical results indicate that adding Bi into InGaAs/GaAsSb type-II active regions on GaAs substrate extends the laser emission wavelength beyond 1550nm without sacrificing the peak gain value. It is shown that these type-II quantum well structures are suitable for 1550nm wavelength region operation at room temperature.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
InAs/GaAsSb quantum dot solar cells

Sabina Hatch, Jiang Wu, Kimberly Sablon, Phu Lam, Mingchu Tang, Qi Jiang, and Huiyun Liu
Opt. Express 22(S3) A679-A685 (2014)

Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes

Yaojiang Chen, Xuyi Zhao, Jian Huang, Zhuo Deng, Chunfang Cao, Qian Gong, and Baile Chen
Opt. Express 26(26) 35034-35045 (2018)

2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit

Ruijun Wang, Stephan Sprengel, Gerhard Boehm, Muhammad Muneeb, Roel Baets, Markus-Christian Amann, and Gunther Roelkens
Opt. Express 24(18) 21081-21089 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
    [Crossref]
  2. W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
    [Crossref]
  3. B. Chen, “Active Region Design and Gain Characteristics of InP-Based Dilute Bismide Type-II Quantum Wells for Mid-IR Lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
    [Crossref]
  4. C.-S. Chang and S. L. Chuang, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
    [Crossref]
  5. J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
    [Crossref]
  6. I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  7. C. A. Broderick, M. Usman, and E. P. O’Reilly, “Derivation of 12-and 14-band k p Hamiltonians for dilute bismide and bismide-nitride semiconductors,” Semicond. Sci. Technol. 28(12), 125025 (2013).
    [Crossref]
  8. M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
    [Crossref]
  9. R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
    [Crossref]
  10. M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).
  11. N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In) GaAsN type-II quantum-well laser active regions,” IEEE J. Quantum Electron. 39(10), 1205–1210 (2003).
    [Crossref]
  12. J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
    [Crossref]
  13. B. Chen, W. Jiang, and A. Holmes., “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
    [Crossref]
  14. B. Chen and A. Holmes., “Optical gain modeling of InP based InGaAs (N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
    [Crossref]
  15. C. A. Broderick, P. E. Harnedy, and E. P. O’Reilly, “Theory of the electronic and optical properties of dilute bismide quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 287–299 (2015).
    [Crossref]
  16. D. Ahn, “Theory of non-Markovian gain in strained-layer quantum-well lasers with many-body effects,” IEEE J. Quantum Electron. 34(2), 344–352 (1998).
    [Crossref]

2017 (1)

B. Chen, “Active Region Design and Gain Characteristics of InP-Based Dilute Bismide Type-II Quantum Wells for Mid-IR Lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

2015 (1)

C. A. Broderick, P. E. Harnedy, and E. P. O’Reilly, “Theory of the electronic and optical properties of dilute bismide quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 287–299 (2015).
[Crossref]

2014 (2)

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

2013 (3)

B. Chen and A. Holmes., “Optical gain modeling of InP based InGaAs (N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

C. A. Broderick, M. Usman, and E. P. O’Reilly, “Derivation of 12-and 14-band k p Hamiltonians for dilute bismide and bismide-nitride semiconductors,” Semicond. Sci. Technol. 28(12), 125025 (2013).
[Crossref]

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

2012 (1)

B. Chen, W. Jiang, and A. Holmes., “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

2007 (1)

K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

2006 (2)

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

2003 (1)

N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In) GaAsN type-II quantum-well laser active regions,” IEEE J. Quantum Electron. 39(10), 1205–1210 (2003).
[Crossref]

2001 (1)

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1999 (1)

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

1998 (1)

D. Ahn, “Theory of non-Markovian gain in strained-layer quantum-well lasers with many-body effects,” IEEE J. Quantum Electron. 34(2), 344–352 (1998).
[Crossref]

1995 (1)

C.-S. Chang and S. L. Chuang, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[Crossref]

Ager, J.

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Ahn, D.

D. Ahn, “Theory of non-Markovian gain in strained-layer quantum-well lasers with many-body effects,” IEEE J. Quantum Electron. 34(2), 344–352 (1998).
[Crossref]

Alberi, K.

K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Ashwin, M.

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Bastiman, F.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

Bertulis, K.

K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Birkett, M.

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Broderick, C. A.

C. A. Broderick, P. E. Harnedy, and E. P. O’Reilly, “Theory of the electronic and optical properties of dilute bismide quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 287–299 (2015).
[Crossref]

C. A. Broderick, M. Usman, and E. P. O’Reilly, “Derivation of 12-and 14-band k p Hamiltonians for dilute bismide and bismide-nitride semiconductors,” Semicond. Sci. Technol. 28(12), 125025 (2013).
[Crossref]

Buckeridge, J.

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Chang, C.-S.

C.-S. Chang and S. L. Chuang, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[Crossref]

Chen, B.

B. Chen, “Active Region Design and Gain Characteristics of InP-Based Dilute Bismide Type-II Quantum Wells for Mid-IR Lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

B. Chen and A. Holmes., “Optical gain modeling of InP based InGaAs (N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

B. Chen, W. Jiang, and A. Holmes., “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

Chuang, S. L.

C.-S. Chang and S. L. Chuang, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[Crossref]

David, J.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

Dubon, O.

K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Friedman, D.

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Geisz, J.

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Gladysiewicz, M.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

Haller, E.

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Harnedy, P. E.

C. A. Broderick, P. E. Harnedy, and E. P. O’Reilly, “Theory of the electronic and optical properties of dilute bismide quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 287–299 (2015).
[Crossref]

Holmes, A.

B. Chen and A. Holmes., “Optical gain modeling of InP based InGaAs (N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

B. Chen, W. Jiang, and A. Holmes., “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

Jiang, W.

B. Chen, W. Jiang, and A. Holmes., “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

Jones, T. S.

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Khandekar, A.

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

Khandekar, A. A.

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

Kopaczek, J.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

Krotkus, A.

K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Kudrawiec, R.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

Kuech, T.

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

Kuech, T. F.

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

Kurtz, S. R.

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Linhart, W.

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Mawst, L.

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

Mawst, L. J.

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In) GaAsN type-II quantum-well laser active regions,” IEEE J. Quantum Electron. 39(10), 1205–1210 (2003).
[Crossref]

Meyer, J.

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Meyer, J. R.

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

Misiewicz, J.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

O’Reilly, E. P.

C. A. Broderick, P. E. Harnedy, and E. P. O’Reilly, “Theory of the electronic and optical properties of dilute bismide quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 287–299 (2015).
[Crossref]

C. A. Broderick, M. Usman, and E. P. O’Reilly, “Derivation of 12-and 14-band k p Hamiltonians for dilute bismide and bismide-nitride semiconductors,” Semicond. Sci. Technol. 28(12), 125025 (2013).
[Crossref]

Olson, J.

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Polak, M.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

Rajpalke, M. K.

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Ram-Mohan, L.

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Richards, R.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

Scanlon, D. O.

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Scharoch, P.

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

Shan, W.

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Tansu, N.

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In) GaAsN type-II quantum-well laser active regions,” IEEE J. Quantum Electron. 39(10), 1205–1210 (2003).
[Crossref]

Usman, M.

C. A. Broderick, M. Usman, and E. P. O’Reilly, “Derivation of 12-and 14-band k p Hamiltonians for dilute bismide and bismide-nitride semiconductors,” Semicond. Sci. Technol. 28(12), 125025 (2013).
[Crossref]

Veal, T. D.

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Vurgaftman, I.

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Walukiewicz, W.

K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Winiarski, M.

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

Yeh, J.-Y.

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

Yu, K.

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Appl. Phys. Lett. (3)

K. Alberi, O. Dubon, W. Walukiewicz, K. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1− x,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN∕GaAsSb type II ‘W’ quantum wells,” Appl. Phys. Lett. 88(5), 051115 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In) GaAsN type-II quantum-well laser active regions,” IEEE J. Quantum Electron. 39(10), 1205–1210 (2003).
[Crossref]

D. Ahn, “Theory of non-Markovian gain in strained-layer quantum-well lasers with many-body effects,” IEEE J. Quantum Electron. 34(2), 344–352 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. A. Broderick, P. E. Harnedy, and E. P. O’Reilly, “Theory of the electronic and optical properties of dilute bismide quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 287–299 (2015).
[Crossref]

C.-S. Chang and S. L. Chuang, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[Crossref]

IEEE Trans. Electron Dev. (1)

B. Chen, “Active Region Design and Gain Characteristics of InP-Based Dilute Bismide Type-II Quantum Wells for Mid-IR Lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

J. Appl. Phys. (2)

R. Kudrawiec, J. Kopaczek, M. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R. Richards, F. Bastiman, and J. David, “Experimental and theoretical studies of band gap alignment in GaAs1− xBix/GaAs quantum wells,” J. Appl. Phys. 116(23), 233508 (2014).
[Crossref]

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

J. Cryst. Growth (1)

J.-Y. Yeh, L. Mawst, A. Khandekar, T. Kuech, I. Vurgaftman, J. Meyer, and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Cryst. Growth 287(2), 615–619 (2006).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, K. Yu, T. S. Jones, and M. Ashwin, “Theoretical and experimental studies of electronic band structure for GaSb1− xBix in the dilute Bi regime,” J. Phys. D Appl. Phys. 47(35), 355107 (2014).

Opt. Quantum Electron. (2)

B. Chen, W. Jiang, and A. Holmes., “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

B. Chen and A. Holmes., “Optical gain modeling of InP based InGaAs (N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

Phys. Rev. Lett. (1)

W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Semicond. Sci. Technol. (1)

C. A. Broderick, M. Usman, and E. P. O’Reilly, “Derivation of 12-and 14-band k p Hamiltonians for dilute bismide and bismide-nitride semiconductors,” Semicond. Sci. Technol. 28(12), 125025 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The band alignment of “W” type-II QW structure with electron and hole wave functions.
Fig. 2
Fig. 2 Contour plot of (a) transition wavelength and (b) wave function overlap of 3nm InGaAs/3nm GaAsSb/3nm InGaAs type-II “W” QW structure at 300K, versus In content in InGaAs and Sb content in GaAsSbBi. The red dot lines in both figures indicate the boundary where the total 9nm QW thickness is equal to the critical thickness with the corresponding strain in the QW. Beyond the red dot line in right upper corner, the total thickness of QW would be larger than the critical thickness of structure.
Fig. 3
Fig. 3 The energy dispersion of the “W” In0.34Ga0.66As/3nm GaAs0.65-xSb0.35Bix/3nm In0.34Ga0.66As QWs with Bi mole fraction of 0%, 3% and 5%. (a) conduction band energy dispersion (b) valence band energy dispersion, where C1 and C2 refer to symmetric and anti-symmetric conduction subband, HH1 and LH1 refer to the first confined state of heavy hole and light hole subbands.
Fig. 4
Fig. 4 The TE and TM component of the squared momentum matrix element of the C1-HH1 transition for the Bi composition of 0%, 3% and 5% for 3nm InGaAs/3nm GaAsSbBi.
Fig. 5
Fig. 5 The calculated TE material gain spectra for 3nm InGaAs/3nm GaAsSbBi QW with Bi composition of 0%, 3% and 5% and carrier concentration of 2 × 1018 cm−3, 4 × 1018 cm−3, and 6 × 1018 cm−3. The solid curve is for Bi-free QW, the dashed curve is for 3% Bi QW and dotted curve is for 5% Bi QW.
Fig. 6
Fig. 6 The calculated TE material gain spectra for 3nm InGaAs/3nm GaAs0.95-ySbyBi0.05 QW with Sb composition 0%, 20%, 35% and carrier concentration of 2 × 1018 cm−3, 4 × 1018 cm−3, and 6 × 1018 cm−3. The solid curve is for Sb-free QW, the dashed curve is for 20% Sb QW and dotted curve is for 35% Sb QW.
Fig. 7
Fig. 7 The energy dispersion of the “W” In0.34Ga0.66As/3nm GaAs0.65-xSb0.35Bix/3nm In0.34Ga0.66As QWs with Bi mole fraction of 5%. (a) conduction band energy dispersion (b) valence band energy dispersion with both flat band model and self-consistent model with injected carrier density of 6 × 1018 cm−3.
Fig. 8
Fig. 8 The calculated TE material gain spectra for 3nm InGaAs/3nm GaAsSbBi QW with 5% Bi fraction and carrier concentration of 2 × 1018 cm−3, 4 × 1018 cm−3, and 6 × 1018 cm−3. The solid curve is for flat band model, the dashed curve is for self-consistent model.

Tables (2)

Tables Icon

Table 1 Parameters of the Constituent Materials in the InGaAs/GaAsSbBi QW used for the 14 Band k.p Calculations

Tables Icon

Table 2 Effective Bandgap, Energy Differences of C2-C1 and HH1-HH2, and Effective Mass of C1 Electron and HH1 Hole

Metrics