Abstract

Spatial structuring of the intensity, phase and polarisation of light is useful in a wide variety of modern applications, from microscopy to optical communications. This shaping is most commonly achieved using liquid crystal spatial light modulators (LC-SLMs). However, the inherent chromatic dispersion of LC-SLMs when used as diffractive elements presents a challenge to the extension of such techniques from monochromatic to broadband light. In this work we demonstrate a method of generating broadband vector beams with dynamically tunable intensity, phase and polarisation over a bandwidth of 100 nm. We use our system to generate radially and azimuthally polarised vector vortex beams carrying orbital angular momentum, and beams whose polarisation states span the majority of the Poincaré sphere. We characterise these broadband vector beams using spatially and spectrally resolved Stokes measurements, and detail the technical and fundamental limitations of our technique, including beam generation fidelity and efficiency. The broadband vector beam shaper that we demonstrate here may find use in applications such as ultrafast beam shaping and white light microscopy.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device

Kevin J. Mitchell, Sergey Turtaev, Miles J. Padgett, Tomáš Čižmár, and David B. Phillips
Opt. Express 24(25) 29269-29282 (2016)

Nonlinear generation of broadband polarisation vortices

Siddharth Ramachandran, Christian Smith, Poul Kristensen, and Peter Balling
Opt. Express 18(22) 23212-23217 (2010)

Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation

Clemens Roider, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 22(4) 4029-4037 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  2. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
    [Crossref]
  3. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
    [Crossref]
  4. M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, M. Ritsch-Marte, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541–16551 (2013).
    [Crossref] [PubMed]
  5. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999).
    [Crossref]
  6. A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18(6), 065609 (2016).
    [Crossref]
  7. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
    [Crossref]
  8. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16, 15897–15902 (2008).
    [Crossref] [PubMed]
  9. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express 20, 14015–14029 (2012).
    [Crossref] [PubMed]
  10. Z. Chen, T. Zeng, B. Qian, and J. Ding, “Complete shaping of optical vector beams,” Opt. Express 23, 17701–17710 (2015).
    [Crossref] [PubMed]
  11. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarised laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006).
    [Crossref] [PubMed]
  12. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref] [PubMed]
  13. P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
    [Crossref] [PubMed]
  14. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref] [PubMed]
  15. K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
    [Crossref] [PubMed]
  16. N. Radwell, R. Hawley, J. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7, 10564 (2016).
    [Crossref] [PubMed]
  17. D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach,” Sci. Rep. 7, 2395 (2017).
    [Crossref]
  18. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [Crossref] [PubMed]
  19. J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
    [Crossref]
  20. J. Liu and J. Wang, “Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator,” Sci. Rep. 5, 9959 (2015).
    [Crossref] [PubMed]
  21. M. A. Cox, C. Rosales-Guzmán, M. P. J. Lavery, D. J. Versfeld, and A. Forbes, “On the resilience of scalar and vector vortex modes in turbulence,” Opt. Express 24, 18105–18113 (2016).
    [Crossref] [PubMed]
  22. T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N. Radwell, “Comparison of beam generation techniques using a phase only spatial light modulator,” Opt. Express 24, 6249–6264 (2016).
    [Crossref] [PubMed]
  23. R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
    [Crossref]
  24. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010).
    [Crossref] [PubMed]
  25. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
    [Crossref]
  26. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [Crossref]
  27. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256–5262 (2002).
    [Crossref] [PubMed]
  28. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [Crossref]
  29. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 1210, 2096–2101 (2004).
    [Crossref]
  30. S. Diddams and J. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996).
    [Crossref]
  31. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
    [Crossref] [PubMed]

2017 (1)

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach,” Sci. Rep. 7, 2395 (2017).
[Crossref]

2016 (6)

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18(6), 065609 (2016).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

N. Radwell, R. Hawley, J. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7, 10564 (2016).
[Crossref] [PubMed]

T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N. Radwell, “Comparison of beam generation techniques using a phase only spatial light modulator,” Opt. Express 24, 6249–6264 (2016).
[Crossref] [PubMed]

M. A. Cox, C. Rosales-Guzmán, M. P. J. Lavery, D. J. Versfeld, and A. Forbes, “On the resilience of scalar and vector vortex modes in turbulence,” Opt. Express 24, 18105–18113 (2016).
[Crossref] [PubMed]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Chen, T. Zeng, B. Qian, and J. Ding, “Complete shaping of optical vector beams,” Opt. Express 23, 17701–17710 (2015).
[Crossref] [PubMed]

J. Liu and J. Wang, “Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator,” Sci. Rep. 5, 9959 (2015).
[Crossref] [PubMed]

2014 (1)

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

2013 (1)

2012 (3)

F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express 20, 14015–14029 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

2010 (2)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarised laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006).
[Crossref] [PubMed]

2004 (3)

2003 (2)

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

1999 (1)

1996 (1)

1984 (1)

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Akcay, C.

Alonso, M. A.

Arnold, A. S.

Baumert, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Beckley, A. M.

Bernet, S.

M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, M. Ritsch-Marte, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541–16551 (2013).
[Crossref] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Botvinick, E.

Bowman, R.

Bowman, R. W.

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

Brixner, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Brown, T. G.

Campos, J.

Carberry, D. M.

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

Chang, R. S.

Chen, Z.

Cižmár, T.

Clark, T. W.

Cottrell, D. M.

Cox, M. A.

Dainty, C.

Davis, J. A.

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Diddams, S.

Diels, J.

Ding, J.

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Dudley, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Forbes, A.

M. A. Cox, C. Rosales-Guzmán, M. P. J. Lavery, D. J. Versfeld, and A. Forbes, “On the resilience of scalar and vector vortex modes in turbulence,” Opt. Express 24, 18105–18113 (2016).
[Crossref] [PubMed]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Fork, R. L.

Franke-Arnold, S.

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Gerber, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Gibson, G. M.

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, M. Ritsch-Marte, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541–16551 (2013).
[Crossref] [PubMed]

Gordon, J. P.

Götte, J.

N. Radwell, R. Hawley, J. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7, 10564 (2016).
[Crossref] [PubMed]

Graefe, O.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Grier, D. G.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Grieve, J. A.

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

Hawley, R.

N. Radwell, R. Hawley, J. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7, 10564 (2016).
[Crossref] [PubMed]

Horn, C.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Kashchuk, A. V.

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18(6), 065609 (2016).
[Crossref]

Keen, S.

Kenny, F.

Krampert, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Lara, D.

Lavery, M. P. J.

Leach, J.

Lee, M. P.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Li, P.

Liese, D.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Linnenberger, A.

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

Litvin, I.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Liu, J.

J. Liu and J. Wang, “Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator,” Sci. Rep. 5, 9959 (2015).
[Crossref] [PubMed]

Liu, Z.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Martinez, O. E.

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Miles, M. J.

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

Mitchell, K. J.

Moreno, I.

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Munro, P. R. T.

Naidoo, D.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Naik, D. N.

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach,” Sci. Rep. 7, 2395 (2017).
[Crossref]

Nesterov, A. V.

Niziev, V. G.

Offer, R. F.

Padgett, M.

Padgett, M. J.

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
[Crossref] [PubMed]

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, M. Ritsch-Marte, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541–16551 (2013).
[Crossref] [PubMed]

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Parrein, P.

Pfeifer, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Phillips, D. B.

Piccirillo, B.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Preece, D.

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18(6), 065609 (2016).
[Crossref]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16, 15897–15902 (2008).
[Crossref] [PubMed]

Qian, B.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Radwell, N.

Rao, D. N.

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach,” Sci. Rep. 7, 2395 (2017).
[Crossref]

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ritsch-Marte, M.

M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, M. Ritsch-Marte, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541–16551 (2013).
[Crossref] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Rodríguez-Herrera, O. G.

Rolland, J. P.

Rosales-Guzmán, C.

Roux, F. S.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Rubinsztein-Dunlop, H.

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18(6), 065609 (2016).
[Crossref]

Saad, N. A.

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach,” Sci. Rep. 7, 2395 (2017).
[Crossref]

Selle, R.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Serati, S.

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Shi, K.

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Stilgoe, A. B.

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18(6), 065609 (2016).
[Crossref]

Török, P.

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Turtaev, S.

Versfeld, D. J.

Viswanathan, N. K.

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach,” Sci. Rep. 7, 2395 (2017).
[Crossref]

Wang, J.

J. Liu and J. Wang, “Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator,” Sci. Rep. 5, 9959 (2015).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Willner, A. E.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wollenhaupt, M.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yin, S.

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yzuel, M. J.

Zeng, T.

Appl. Opt. (3)

Comput. Phys. Commun. (1)

R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, “‘red tweezers’: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun. 185, 268–273 (2014).
[Crossref]

J. Opt. (1)

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18(6), 065609 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

Nat. Commun. (1)

N. Radwell, R. Hawley, J. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7, 10564 (2016).
[Crossref] [PubMed]

Nat. Photonics (4)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

New J. Phys. (2)

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
[Crossref]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Opt. Express (10)

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 1210, 2096–2101 (2004).
[Crossref]

P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
[Crossref] [PubMed]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16, 15897–15902 (2008).
[Crossref] [PubMed]

A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010).
[Crossref] [PubMed]

F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express 20, 14015–14029 (2012).
[Crossref] [PubMed]

M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, M. Ritsch-Marte, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541–16551 (2013).
[Crossref] [PubMed]

Z. Chen, T. Zeng, B. Qian, and J. Ding, “Complete shaping of optical vector beams,” Opt. Express 23, 17701–17710 (2015).
[Crossref] [PubMed]

T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N. Radwell, “Comparison of beam generation techniques using a phase only spatial light modulator,” Opt. Express 24, 6249–6264 (2016).
[Crossref] [PubMed]

M. A. Cox, C. Rosales-Guzmán, M. P. J. Lavery, D. J. Versfeld, and A. Forbes, “On the resilience of scalar and vector vortex modes in turbulence,” Opt. Express 24, 18105–18113 (2016).
[Crossref] [PubMed]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum Control by Ultrafast Polarization Shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Sci. Rep. (2)

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach,” Sci. Rep. 7, 2395 (2017).
[Crossref]

J. Liu and J. Wang, “Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator,” Sci. Rep. 5, 9959 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: Stage 1: beam preparation and shaping. Stage 2: displaced Sagnac interferometer for dispersion compensation and beam combination. Stage 3: vector beam analysis. Main text gives details of operation. SC laser is a Fianium Femtopower 1060 Supercontinuum laser (SC-400-6) filtered to produce an input source of 145 nm bandwidth. PMF is a polarisation-maintaining fibre. Lenses F1 and F2 have focal lengths of 20 mm and 100 mm respectively, and are used for a 5 × beam expansion. SLM1 and SLM2 are both Boulder Nonlinear Systems P512-0635 LC-SLMs. HWP1 and HWP2 are half-wave plates. (N)PBS is a (non-)polarising beamsplitter cube. Lenses F3 − F5, of focal length 300 mm, make a 4-F imaging system. M1–M7 are broadband dielectric mirrors. ODE is an optical delay element. LP is a linear polariser. QWP is a quarter-wave plate. BP is an interchangeable bandpass filter. The camera is a Prosilica GC660 CCD. (i) Schematic showing the nature of chromatic dispersion in beams A and B formed by SLM1 in stage 1.

Fig. 2
Fig. 2

LC-SLM Hologram design and CCD image of a radially polarised broadband vector vortex beam: (a,b) The holograms displayed on SLM1 (a) and SLM2 (b) to generate a broadband radially polarised beam. (c) A radially polarised vector vortex beam, for example, can be generated by combining a horizontally polarised HG10 beam and a vertically polarised HG01 beam. (d) A CCD image with aperture APT2 removed and no bandpass filters present in stage 3. All input wavelengths combine to form a broadband vector beam at the lower centre of the panel. As aperture APT2 is removed, the chromatically dispersed zero diffraction orders reflected from SLM2 can also be seen in the upper left and right corners.

Fig. 3
Fig. 3

Experimentally generated broadband vector beams with uniform polarisation: Top row: (a–d) the polarisation ellipse maps of a Gaussian beam whose polarisation is uniformly linear at an angle of 45° shown at the four defined wavebands from 555 nm to 655 nm. In this case the spatial mode of both beams A and B is Gaussian (HG0,0), their relative power is equalised, and their global phase difference tuned to 0 radians. All of these parameters are controlled by adjusting the hologram on SLM1. Bottom row: (e–h) when the global phase difference between beam A and B is adjusted to π/2 radians, we generate a uniformly circularly polarised vector beam. Inset within each polarisation ellipse map is a CCD image showing the intensity with no quarter wave-plate or linear polariser in place in stage 3. Scale bar in (a) and (e) is 30 μm.

Fig. 4
Fig. 4

Experimentally generated broadband vector vortex beams with spatially varying polarisation: Top row: (a–d) in the Fourier plane of SLM2, the experimental broadband polarisation ellipse maps of a broadband radial vector vortex beam. This beam is formed by shaping the spatial mode of beams A and B with an HG1,0 and HG0,1 mode respectively. Bottom row: an azimuthally polarised vector vortex beam, formed by shaping beams A and B with HG0,1 and HG1,0 modes respectively. Inset within each polarisation ellipse map is a CCD image detailing the intensity with no quarter wave-plate or linear polariser in place in stage 3. Scale bar in (a) and (e) is 30 μm.

Fig. 5
Fig. 5

Experimentally generated broadband Poincaré beams: Top row: (a–d) the “Lemon” Poincaré beam, formed by shaping beam A with modes LG1,0 + LG0,0 exp()/2) and beam B with modes LG1,0 exp(/2) + LG0,0. Bottom row: (e–h) the “Star” type Poincaré beam, formed by shaping beam A with modes LG1,0 exp(/2) + LG0,0 and beam B with modes LG1,0 + LG0,0 exp(/2). The colour of the ellipses indicates the handedness of the local polarisation state, where blue is left-handed and red is right-handed. Inset within each polarisation ellipse map is a CCD image detailing the intensity with no quarter wave-plate or linear polariser in place in stage 3. Scale bar in (a) and (e) is 30 μm.

Fig. 6
Fig. 6

Simulated performance of our broadband polarisation beam shaper: Fidelity and generation efficiency as a function of wavelength for a radially polarised beam (a), and a “Star” type Poincaré beam (b). Insets within the graphs show ideal and generated beam intensities for the lowest fidelity wavelength (655 nm). Insets to the right-hand side show polarisation maps and beam components in both cases. (c,d) Ideal (c) and generated (d) beams with a more complicated polarisation structure. In this case the illumination wavelength was 655 nm while the SLM1 hologram design wavelength was 605 nm. The construction of this type of beam is considered in more detail in [15].

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , λ 0 ) = [ E A ( x , y , λ 0 ) e i ϕ A ( x , y , λ 0 ) E B ( x , y , λ 0 ) e i ϕ B ( x , y , λ 0 ) ]
𝕊 dual ( u , v , λ 0 ) = W rel e i ϕ global 𝔸 + ( 1 W rel ) 𝔹 = S dual = ( u , v , λ 0 ) e i ϕ S , dual ( u , v , λ 0 ) ,
𝔸 = [ 𝔉 ( E A e i ϕ A ) ] e i ( ϕ A , tilt ) , 𝔹 = [ 𝔉 ( E B e i ϕ B ) ] e i ( ϕ B , tilt ) ,
H ( u , v , λ 0 ) = [ 1 1 π sinc 1 ( S dual , norm ( u , v , λ 0 ) ) ] ϕ S , dual ( u , v , λ 0 )
ϕ A , tilt ( u , v ) = 2 π λ 0 f 3 ( u x + v y ) , ϕ B , tilt ( u , v ) = 2 π λ 0 f 3 ( u x + v y ) ,
ϕ SLM 2 ( u , v ) = 2 π λ 0 f 3 ( u x v y ) .
F ( λ ) = | [ Ψ A * ( x , , y , λ ) 𝔼 A ( x , y , λ ) + Ψ B * ( x , y , λ ) 𝔼 B ( x , y , λ ) ] d x d y | 2 ,

Metrics