Abstract

We report experimental observations of optical hot-spots associated with surface phonon polaritons in boron nitride nanotubes. As revealed by near-field optical microscopy, the hot-spots have mode volumes as small as 2.7×106λ030 is the wavelength of the exciting light in vacuum), which are in the deep subwavelength regime. Such strong light-trapping leads to ultrahigh field enhancement with a Purcell factor of ≃1.8 × 106. Remarkably, the hot-spots are not induced by designed structures, but by random scatterings with the rough gold substrate. The ultrahigh field enhancement can be used to improve nonlinear infrared spectroscopy, thermal emitters and detectors, and label-free molecule sensing at nanoscales.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy

Piotr Patoka, Georg Ulrich, Ariana E. Nguyen, Ludwig Bartels, Peter A. Dowben, Volodymyr Turkowski, Talat S. Rahman, Peter Hermann, Bernd Kästner, Arne Hoehl, Gerhard Ulm, and Eckart Rühl
Opt. Express 24(2) 1154-1164 (2016)

Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation

Brian T. O’Callahan, William E. Lewis, Silke Möbius, Jared C. Stanley, Eric A. Muller, and Markus B. Raschke
Opt. Express 23(25) 32063-32074 (2015)

Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip

R. Bachelot, P. Gleyzes, and A. C. Boccara
Appl. Opt. 36(10) 2160-2170 (1997)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
    [Crossref]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref] [PubMed]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).
  5. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).
  6. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
    [Crossref]
  7. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature (London) 418, 159–162 (2002).
    [Crossref]
  8. J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a sic grating supporting a surface-phonon polariton,” Phys. Rev. B 55, 10105 (1997).
    [Crossref]
  9. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
    [Crossref] [PubMed]
  10. J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
    [Crossref]
  11. X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
    [Crossref] [PubMed]
  12. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2, 103–130 (2013).
    [Crossref]
  13. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photon. 6, 409–411 (2012).
    [Crossref]
  14. X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
    [Crossref] [PubMed]
  15. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
    [Crossref]
  16. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
    [Crossref]
  17. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena: Localization and Mesoscopic Phenomena, vol. 88 (Springer, 2006).
  18. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
    [Crossref]
  19. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [Crossref] [PubMed]
  20. K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
    [Crossref] [PubMed]
  21. J. M. Drake and A. Z. Genack, “Observation of nonclassical optical diffusion,” Phys. Rev. Lett. 63, 259–262 (1989).
    [Crossref] [PubMed]
  22. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  23. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
    [Crossref] [PubMed]
  24. D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39, 1222–1225 (1977).
    [Crossref]
  25. S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
    [Crossref]
  26. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: Surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16 (2003).
    [Crossref]
  27. S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
    [Crossref] [PubMed]
  28. X. G. Xu, A. E. Tanur, and G. C. Walker, “Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes,” J. Phys. Chem. A 117, 3348–3354 (2013).
    [Crossref] [PubMed]
  29. B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
    [Crossref]
  30. X.-G. Xu, unpublished (2017).
  31. Z. H. Kim, B. Liu, and S. R. Leone, “Nanometer-scale optical imaging of epitaxially grown gan and inn islands using apertureless near-field microscopy,” J. Phys. Chem. B 109, 8503–8508 (2005).
    [Crossref]
  32. T. Thonhauser and G. D. Mahan, “Phonon modes in si [111] nanowires,” Phys. Rev. B 69, 075213 (2004).
    [Crossref]
  33. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
    [Crossref]
  34. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
    [Crossref]
  35. K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
    [Crossref]
  36. E. J. R. Vesseur, F. J. G. de Abajo, and A. Polman, “Broadband purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82, 165419 (2010).
    [Crossref]
  37. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
    [PubMed]
  38. P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
    [Crossref] [PubMed]
  39. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
    [Crossref] [PubMed]
  40. V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
    [Crossref] [PubMed]

2014 (6)

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

2013 (5)

X. G. Xu, A. E. Tanur, and G. C. Walker, “Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes,” J. Phys. Chem. A 117, 3348–3354 (2013).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2, 103–130 (2013).
[Crossref]

2012 (3)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photon. 6, 409–411 (2012).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

2010 (1)

E. J. R. Vesseur, F. J. G. de Abajo, and A. Polman, “Broadband purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82, 165419 (2010).
[Crossref]

2009 (2)

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[Crossref]

2005 (1)

Z. H. Kim, B. Liu, and S. R. Leone, “Nanometer-scale optical imaging of epitaxially grown gan and inn islands using apertureless near-field microscopy,” J. Phys. Chem. B 109, 8503–8508 (2005).
[Crossref]

2004 (1)

T. Thonhauser and G. D. Mahan, “Phonon modes in si [111] nanowires,” Phys. Rev. B 69, 075213 (2004).
[Crossref]

2003 (3)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
[Crossref]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: Surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16 (2003).
[Crossref]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature (London) 418, 159–162 (2002).
[Crossref]

1997 (3)

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a sic grating supporting a surface-phonon polariton,” Phys. Rev. B 55, 10105 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

1996 (1)

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[Crossref]

1990 (1)

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[Crossref] [PubMed]

1989 (2)

E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

J. M. Drake and A. Z. Genack, “Observation of nonclassical optical diffusion,” Phys. Rev. Lett. 63, 259–262 (1989).
[Crossref] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

1985 (1)

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[Crossref] [PubMed]

1984 (1)

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[Crossref]

1977 (1)

D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39, 1222–1225 (1977).
[Crossref]

1958 (1)

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[Crossref]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Anderson, P. W.

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

Andreev, G. O.

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Arya, K.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[Crossref] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[Crossref]

Atwater, H.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Avouris, P.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Bando, Y.

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

Basov, D. N.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Bergman, D. J.

D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39, 1222–1225 (1977).
[Crossref]

Berini, P.

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

Birman, J. L.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[Crossref]

Brar, V. W.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Brunner, A.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Burch, K. S.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Burk, C.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Caldwell, J. D.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Chen, G.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Chen, Y.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Choi, M.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

Dai, S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

de Abajo, F. J. G.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

E. J. R. Vesseur, F. J. G. de Abajo, and A. Polman, “Broadband purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82, 165419 (2010).
[Crossref]

Dolde, F.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Dominguez, G.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Drake, J. M.

J. M. Drake and A. Z. Genack, “Observation of nonclassical optical diffusion,” Phys. Rev. Lett. 63, 259–262 (1989).
[Crossref] [PubMed]

Ellis, C. T.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Fan, S.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

Fei, Z.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Fogler, M. M.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Francescato, Y.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Gall, J. Le

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a sic grating supporting a surface-phonon polariton,” Phys. Rev. B 55, 10105 (1997).
[Crossref]

Gannett, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Genack, A. Z.

J. M. Drake and A. Z. Genack, “Observation of nonclassical optical diffusion,” Phys. Rev. Lett. 63, 259–262 (1989).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[Crossref]

Ghamsari, B. G.

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

Giannini, V.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Gilburd, L.

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

Giles, A. J.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

Gmitter, T. J.

E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Golberg, D.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

Greffet, J.-J.

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a sic grating supporting a surface-phonon polariton,” Phys. Rev. B 55, 10105 (1997).
[Crossref]

Guinea, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature (London) 418, 159–162 (2002).
[Crossref]

Honert, J.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Imry, Y.

D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39, 1222–1225 (1977).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Jakobi, I.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Jang, M. S.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Jarillo-Herrero, P.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Jiang, J.

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

Jiang, J.-H.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

John, S.

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[Crossref]

Keilmann, F.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature (London) 418, 159–162 (2002).
[Crossref]

Kim, L. B.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Kim, S.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Kim, Z. H.

Z. H. Kim, B. Liu, and S. R. Leone, “Nanometer-scale optical imaging of epitaxially grown gan and inn islands using apertureless near-field microscopy,” J. Phys. Chem. B 109, 8503–8508 (2005).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Koppens, F. H. L.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Kretinin, A.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2, 103–130 (2013).
[Crossref]

Leone, S. R.

Z. H. Kim, B. Liu, and S. R. Leone, “Nanometer-scale optical imaging of epitaxially grown gan and inn islands using apertureless near-field microscopy,” J. Phys. Chem. B 109, 8503–8508 (2005).
[Crossref]

Li, X.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Liu, B.

Z. H. Kim, B. Liu, and S. R. Leone, “Nanometer-scale optical imaging of epitaxially grown gan and inn islands using apertureless near-field microscopy,” J. Phys. Chem. B 109, 8503–8508 (2005).
[Crossref]

Liu, M. K.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Lopez, J. J.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Low, T.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Ma, Q.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

Mahan, G. D.

T. Thonhauser and G. D. Mahan, “Phonon modes in si [111] nanowires,” Phys. Rev. B 69, 075213 (2004).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

McLeod, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Neto, A. H. C.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Neumann, P.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[Crossref]

Olivier, M.

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a sic grating supporting a surface-phonon polariton,” Phys. Rev. B 55, 10105 (1997).
[Crossref]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[Crossref]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2, 103–130 (2013).
[Crossref]

Polman, A.

E. J. R. Vesseur, F. J. G. de Abajo, and A. Polman, “Broadband purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82, 165419 (2010).
[Crossref]

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

Regan, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Rensing, R. G.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Rephaeli, E.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

Reuter, R.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Rodin, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Shen, S.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Sheng, P.

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena: Localization and Mesoscopic Phenomena, vol. 88 (Springer, 2006).

Sherrott, M.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Shim, J. H.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: Surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16 (2003).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[Crossref]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photon. 6, 409–411 (2012).
[Crossref]

Su, Z. B.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[Crossref] [PubMed]

Taniguchi, T.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Tanur, A. E.

X. G. Xu, A. E. Tanur, and G. C. Walker, “Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes,” J. Phys. Chem. A 117, 3348–3354 (2013).
[Crossref] [PubMed]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature (London) 418, 159–162 (2002).
[Crossref]

Thiemens, M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Thonhauser, T.

T. Thonhauser and G. D. Mahan, “Phonon modes in si [111] nanowires,” Phys. Rev. B 69, 075213 (2004).
[Crossref]

Tischler, J. G.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, F. J. G. de Abajo, and A. Polman, “Broadband purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82, 165419 (2010).
[Crossref]

Wagner, M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Waldherr, G.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Walker, G. C.

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

X. G. Xu, A. E. Tanur, and G. C. Walker, “Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes,” J. Phys. Chem. A 117, 3348–3354 (2013).
[Crossref] [PubMed]

Wang, J.

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Wasserman, D.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2, 103–130 (2013).
[Crossref]

Watanabe, K.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Wolf, T.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

Woods, C. R.

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Xia, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Xu, X. G.

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

X. G. Xu, A. E. Tanur, and G. C. Walker, “Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes,” J. Phys. Chem. A 117, 3348–3354 (2013).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yan, H.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: Surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16 (2003).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

Zettl, A.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[Crossref]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Zhi, C.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Zhi, C. Y.

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Zurutuza Elorza, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

ACS Nano (1)

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

J. Opt. (1)

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

J. Opt. A (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: Surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16 (2003).
[Crossref]

J. Phys. Chem. A (1)

X. G. Xu, A. E. Tanur, and G. C. Walker, “Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes,” J. Phys. Chem. A 117, 3348–3354 (2013).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

Z. H. Kim, B. Liu, and S. R. Leone, “Nanometer-scale optical imaging of epitaxially grown gan and inn islands using apertureless near-field microscopy,” J. Phys. Chem. B 109, 8503–8508 (2005).
[Crossref]

Nano Lett. (4)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, and J. H. Shim, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett. 13, 2738–2742 (2013).
[Crossref] [PubMed]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2, 103–130 (2013).
[Crossref]

Nat. Commun. (2)

J. D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, and A. J. Giles, “Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride,” Nat. Commun. 5, 7507 (2014).
[Crossref]

X. G. Xu, B. G. Ghamsari, J. Jiang, L. Gilburd, G. O. Andreev, C. Y. Zhi, Y. Bando, D. Golberg, P. Berini, and G. C. Walker, “One-dimensional surface phonon polaritons in boron nitride nanotubes,” Nat. Commun. 5, 4782 (2014).
[Crossref] [PubMed]

Nat. Photon. (3)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photon. 6, 409–411 (2012).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photon. 7, 394–399 (2013).
[Crossref]

Nature (London) (6)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature (London) 418, 159–162 (2002).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (London) 487, 77–81 (2012).

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (London) 487, 5 (2012).

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
[Crossref]

Phys. Rev. (1)

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

Phys. Rev. B (4)

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a sic grating supporting a surface-phonon polariton,” Phys. Rev. B 55, 10105 (1997).
[Crossref]

E. J. R. Vesseur, F. J. G. de Abajo, and A. Polman, “Broadband purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82, 165419 (2010).
[Crossref]

T. Thonhauser and G. D. Mahan, “Phonon modes in si [111] nanowires,” Phys. Rev. B 69, 075213 (2004).
[Crossref]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[Crossref]

Phys. Rev. Lett. (9)

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[Crossref] [PubMed]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[Crossref] [PubMed]

J. M. Drake and A. Z. Genack, “Observation of nonclassical optical diffusion,” Phys. Rev. Lett. 63, 259–262 (1989).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39, 1222–1225 (1977).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena: Localization and Mesoscopic Phenomena, vol. 88 (Springer, 2006).

X.-G. Xu, unpublished (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A scheme of s-SNOM setup. (b) AFM topography of a BNNT on top of another BNNT. The scale bar is 300 nm. (c) Near-field images taken at 1410 cm−1 of the BNNTs in (b). (d) AFM topography of a rough gold surface, the gold nano-grains have diameter from 10nm to 30 nm. The scale bar is 200 nm. (e) s-SNOM IR image of the same substrate area.
Fig. 2
Fig. 2 BNNT near-field images at different infrared frequencies. (a) Topography of a BNNT. (b) AFM phase image of the BNNT. (c–g) Near-field images of the BNNT at 1380 cm−1, 1398 cm−1,1410 cm−1 1422 cm−1, and 1435 cm−1, respectively, taken with π/2 homodyne technique [28]. (h) Fourier transformation of the SPhPs of the BNNT showing a splitting of spatial frequency peaks. (i) Scheme of back reflections of SPhPs by nanotube terminal and gold nano-grains.
Fig. 3
Fig. 3 BNNT near-field images at different infrared frequencies. (a) Topography of a BNNT. (b–f) Near-field images of the BNNT at 1380 cm−1, 1415 cm−1,1420 cm−1 1430 cm−1, and 1590 cm−1, respectively. The color scale is tuned to maintain the same color for near-field response of the gold substrate.
Fig. 4
Fig. 4 (a) Averaged wavevector q as a function of frequency for three samples. One sample is placed on smooth gold substrate, while the other two samples (1 and 2) are placed on rough gold substrates. The method for averaging the wavevector when there are multiple peaks in the spatial frequency is explained in the main text. (b) Profiles of near-field signal of the BNNT at different infrared frequencies. The intensities are normalized assuming the same level of near-field (NF) signal on the gold substrate. The total amplitudes of near-field signals are plotted in the figure, by taking the vector sum of near-field amplitudes collected at two quadrature homodyne phase conditions [31]. Strong localization of SPhPs leads to an increase of total near-field signal that even greatly surpass the strong near-field signal from the rough gold substrate for the frequency 1430 cm−1.
Fig. 5
Fig. 5 Local optical field intensity (in arbitrary units) |2+rtot|2 of SPhPs as a function of the exciting position which mimics the near-field signal as function of AFM tip position along a BNNT of 1.6 μm length for frequencies (a) 1400 cm−1, (b) 1410 cm−1, (c) 1420 cm−1 and (d) 1430 cm−1. The blue curves are for a BNNT on the smooth gold substrate, while the red curves are for a BNNT on the rough gold substrate.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

r t o t = r L + r R + 2 r L r R 1 r L r R .
( E j , r + r R E j , r i q j ( E j , r r R E j , r ) ) = ( M 11 ( R ) M 12 ( R ) M 21 ( R ) M 22 ( R ) ) ( 0 2 i q N E N , r ) ,
r R = i q j M 12 ( R ) M 22 ( R ) i q j M 12 ( R ) + M 22 ( R ) .
M ^ ( R ) =   m = j + 1 N M ^ m 1
M ^ m = ( cos ( q m a ) sin ( q m a ) / q m sin ( q m a ) q m cos ( q m a ) ) ,
M ^ ( L ) =   m = j 1 0 M ^ m .
( r L E j , l + E j , l i q j ( r L E j , l E j , l ) ) = ( M 11 ( L ) M 12 ( L ) M 21 ( L ) M 22 ( L ) ) ( 0 2 i q 0 E 0 , l ) ,
r L = i q j M 12 ( L ) + M 22 ( L ) i q j M 12 ( L ) M 22 ( L ) .
n = 0 ( 2 + r L + r R ) ( r L r R ) n = 2 + r t o t
ε m , eff = 1 2 ( ε eff 0 + ε eff g ) j = 0 N t o t / N p α j δ ε exp [ ( m j N p ) 2 2 σ 2 ]

Metrics