Abstract

A miniature all-optical probe for high-resolution photoacoustic (PA)-ultrasound (US) imaging using a large synthetic aperture is developed. The probe consists of three optical fibers for PA excitation, US generation, and detection of acoustic waves, respectively. The fiber for PA excitation has a large numerical aperture (NA) for wide-angle laser illumination. On the other hand, the fiber with a carbon black-polydimethylsiloxane composite coated on the end face of the optical fiber is used for wide-angle US transmission through laser-US conversion. Both the excited PA and backscattered US signals are detected by a fiber-tip Fabry-Perot cavity for wide-angle acoustic detection. The probe outer diameter is only ~2 mm. The synergy of the three optical fibers makes a large-NA synthetic aperture focusing technique for high-resolution PA and US imaging possible. High PA lateral resolutions of 104−154 μm and high US lateral resolutions of 64−112 μm over a depth range of > 4 mm are obtained. Compared with other existing miniature PA-US probes, to our knowledge, our probe achieves by far the best performance in terms of lateral resolutions and imaging depth range. The constructed probe has potential for endoscopic and intravascular imaging applications that require PA and US contrasts with high resolutions over a large depth range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging

Richard J. Colchester, Edward Z. Zhang, Charles A. Mosse, Paul C. Beard, Ioannis Papakonstantinou, and Adrien E. Desjardins
Biomed. Opt. Express 6(4) 1502-1511 (2015)

All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging

Stefan Preisser, Wolfgang Rohringer, Mengyang Liu, Christian Kollmann, Stefan Zotter, Balthasar Fischer, and Wolfgang Drexler
Biomed. Opt. Express 7(10) 4171-4186 (2016)

Combined frequency domain photoacoustic and ultrasound imaging for intravascular applications

Robin F. Castelino, Michael Hynes, Chelsea E. Munding, Sergey Telenkov, and F. Stuart Foster
Biomed. Opt. Express 7(11) 4441-4449 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
    [PubMed]
  2. A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
    [PubMed]
  3. K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
    [PubMed]
  4. J. Mamou, O. Aristizábal, R. H. Silverman, J. A. Ketterling, and D. H. Turnbull, “High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging,” Ultrasound Med. Biol. 35(7), 1198–1208 (2009).
    [PubMed]
  5. J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
    [PubMed]
  6. R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
    [PubMed]
  7. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
    [PubMed]
  8. P. Subochev, A. Orlova, M. Shirmanova, A. Postnikova, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study,” Biomed. Opt. Express 6(2), 631–638 (2015).
    [PubMed]
  9. S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 86004 (2015).
    [PubMed]
  10. X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
    [PubMed]
  11. D. VanderLaan, A. B. Karpiouk, D. Yeager, and S. Emelianov, “Real-time intravascular ultrasound and photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 141–149 (2017).
    [PubMed]
  12. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express 15(25), 16657–16666 (2007).
    [PubMed]
  13. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
    [PubMed]
  14. B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
    [PubMed]
  15. B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
    [PubMed]
  16. A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
    [PubMed]
  17. W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
    [PubMed]
  18. R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
    [PubMed]
  19. B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in Ultrasonics Symposium (IUS, 2012), pp. 1410−1413.
  20. B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
    [PubMed]
  21. R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).
  22. W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).
  23. S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).
  24. S.-L. Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2017).
  25. S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
    [PubMed]
  26. S.-W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
    [PubMed]
  27. C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
  28. P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
    [PubMed]
  29. E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).
  30. E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).
  31. T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).
  32. S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
  33. J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
    [PubMed]
  34. M.-L. Li, W.-J. Guan, and P.-C. Li, “Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 63–70 (2004).
    [PubMed]
  35. C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
    [PubMed]
  36. D. Cai, Z. Li, Y. Li, Z. Guo, and S.-L. Chen, “Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution,” Opt. Express 25(2), 1421–1434 (2017).
    [PubMed]
  37. D. Cai, G. Li, D. Xia, Z. Li, Z. Guo, and S.-L. Chen, “Synthetic aperture focusing technique for photoacoustic endoscopy,” Opt. Express 25(2), 20162–20171 (2017).
  38. S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
    [PubMed]
  39. J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
    [PubMed]

2017 (4)

S.-L. Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2017).

D. VanderLaan, A. B. Karpiouk, D. Yeager, and S. Emelianov, “Real-time intravascular ultrasound and photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 141–149 (2017).
[PubMed]

D. Cai, Z. Li, Y. Li, Z. Guo, and S.-L. Chen, “Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution,” Opt. Express 25(2), 1421–1434 (2017).
[PubMed]

D. Cai, G. Li, D. Xia, Z. Li, Z. Guo, and S.-L. Chen, “Synthetic aperture focusing technique for photoacoustic endoscopy,” Opt. Express 25(2), 20162–20171 (2017).

2015 (8)

P. Subochev, A. Orlova, M. Shirmanova, A. Postnikova, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study,” Biomed. Opt. Express 6(2), 631–638 (2015).
[PubMed]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[PubMed]

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 86004 (2015).
[PubMed]

2014 (6)

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
[PubMed]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[PubMed]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[PubMed]

2013 (1)

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

2011 (3)

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).

K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
[PubMed]

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[PubMed]

2010 (4)

2009 (4)

J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[PubMed]

S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[PubMed]

J. Mamou, O. Aristizábal, R. H. Silverman, J. A. Ketterling, and D. H. Turnbull, “High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging,” Ultrasound Med. Biol. 35(7), 1198–1208 (2009).
[PubMed]

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[PubMed]

2008 (2)

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

S.-W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[PubMed]

2007 (2)

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[PubMed]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express 15(25), 16657–16666 (2007).
[PubMed]

2006 (1)

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[PubMed]

2004 (2)

M.-L. Li, W.-J. Guan, and P.-C. Li, “Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 63–70 (2004).
[PubMed]

C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
[PubMed]

2002 (1)

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
[PubMed]

Aglyamov, S. R.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[PubMed]

Allen, T. J.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).

Amirian, J.

Amirian, J. H.

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express 15(25), 16657–16666 (2007).
[PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[PubMed]

Aristizábal, O.

J. Mamou, O. Aristizábal, R. H. Silverman, J. A. Ketterling, and D. H. Turnbull, “High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging,” Ultrasound Med. Biol. 35(7), 1198–1208 (2009).
[PubMed]

Ashkenazi, S.

S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[PubMed]

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

S.-W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[PubMed]

Bai, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Beard, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[PubMed]

Beard, P. C.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[PubMed]

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).

Brands, P.

Cai, D.

Cannata, J. M.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[PubMed]

Chang, Y.-C.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

Chen, S.-L.

S.-L. Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2017).

D. Cai, G. Li, D. Xia, Z. Li, Z. Guo, and S.-L. Chen, “Synthetic aperture focusing technique for photoacoustic endoscopy,” Opt. Express 25(2), 20162–20171 (2017).

D. Cai, Z. Li, Y. Li, Z. Guo, and S.-L. Chen, “Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution,” Opt. Express 25(2), 1421–1434 (2017).
[PubMed]

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[PubMed]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[PubMed]

S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[PubMed]

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

Chen, Z.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[PubMed]

Colchester, R. J.

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[PubMed]

Daoudi, K.

Desjardins, A. E.

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[PubMed]

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

Emelianov, S.

D. VanderLaan, A. B. Karpiouk, D. Yeager, and S. Emelianov, “Real-time intravascular ultrasound and photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 141–149 (2017).
[PubMed]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
[PubMed]

Emelianov, S. Y.

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[PubMed]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express 15(25), 16657–16666 (2007).
[PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[PubMed]

Fawzi, A.

Gong, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Gratt, S.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

Guan, W.-J.

M.-L. Li, W.-J. Guan, and P.-C. Li, “Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 63–70 (2004).
[PubMed]

Guo, L. J.

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[PubMed]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[PubMed]

S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[PubMed]

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

Guo, Z.

Hau, W.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Hou, Y.

S.-W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[PubMed]

Hsieh, B.-Y.

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 86004 (2015).
[PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[PubMed]

Hu, J.

Huang, S.-W.

S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[PubMed]

S.-W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[PubMed]

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

Hung, S.-Y.

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 86004 (2015).
[PubMed]

Hurrell, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[PubMed]

Jansen, K.

Jiang, M.

Jiao, S.

Karpiouk, A. B.

D. VanderLaan, A. B. Karpiouk, D. Yeager, and S. Emelianov, “Real-time intravascular ultrasound and photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 141–149 (2017).
[PubMed]

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[PubMed]

Ketterling, J. A.

J. Mamou, O. Aristizábal, R. H. Silverman, J. A. Ketterling, and D. H. Turnbull, “High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging,” Ultrasound Med. Biol. 35(7), 1198–1208 (2009).
[PubMed]

Kohl, A.

Kuban, B. D.

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
[PubMed]

Li, G.

Li, M.-L.

M.-L. Li, W.-J. Guan, and P.-C. Li, “Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 63–70 (2004).
[PubMed]

C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
[PubMed]

Li, P.-C.

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 86004 (2015).
[PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[PubMed]

C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
[PubMed]

M.-L. Li, W.-J. Guan, and P.-C. Li, “Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 63–70 (2004).
[PubMed]

Li, X.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[PubMed]

Li, Y.

Li, Z.

Liao, C.-K.

Lin, R.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Ling, T.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[PubMed]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[PubMed]

S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[PubMed]

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

Litovsky, S. H.

Liu, C.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Mamou, J.

J. Mamou, O. Aristizábal, R. H. Silverman, J. A. Ketterling, and D. H. Turnbull, “High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging,” Ultrasound Med. Biol. 35(7), 1198–1208 (2009).
[PubMed]

Mari, J. M.

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

Maslov, K.

Maxwell, A.

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

Meyer, D.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

Mihnev, M. T.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

Morris, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[PubMed]

Mosse, C. A.

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[PubMed]

Nair, A.

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
[PubMed]

Nikitichev, D. I.

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

Nissen, S. E.

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
[PubMed]

Norris, T. B.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

Nuster, R.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

O’Donnell, M.

S.-W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[PubMed]

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

Ok, J. G.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

Oosterhuis, J. W.

Orlova, A.

Ourselin, S.

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

Paltauf, G.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

Papakonstantinou, I.

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[PubMed]

Postnikova, A.

Puliafito, C. A.

Rabot, O.

Ritter, T. A.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[PubMed]

Salvenmoser, W.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

Schmitner, N.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

Schoenhagen, P.

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
[PubMed]

Sethuraman, S.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[PubMed]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express 15(25), 16657–16666 (2007).
[PubMed]

Shaw, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[PubMed]

Shirmanova, M.

Shung, K. K.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[PubMed]

J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[PubMed]

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[PubMed]

Silverman, R. H.

J. Mamou, O. Aristizábal, R. H. Silverman, J. A. Ketterling, and D. H. Turnbull, “High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging,” Ultrasound Med. Biol. 35(7), 1198–1208 (2009).
[PubMed]

Smalling, R.

Smalling, R. W.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[PubMed]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express 15(25), 16657–16666 (2007).
[PubMed]

Song, L.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Steenbergen, W.

Su, J. L.

Subochev, P.

Tisserand, S.

Turchin, I.

Turnbull, D. H.

J. Mamou, O. Aristizábal, R. H. Silverman, J. A. Ketterling, and D. H. Turnbull, “High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging,” Ultrasound Med. Biol. 35(7), 1198–1208 (2009).
[PubMed]

Tuzcu, E. M.

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
[PubMed]

van Beusekom, H. M. M.

van den Berg, P. J.

van der Steen, A. F. W.

van Soest, G.

VanderLaan, D.

D. VanderLaan, A. B. Karpiouk, D. Yeager, and S. Emelianov, “Real-time intravascular ultrasound and photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 141–149 (2017).
[PubMed]

Vince, D. G.

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
[PubMed]

Wang, B.

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[PubMed]

B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010).
[PubMed]

Wang, L. V.

J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
[PubMed]

J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[PubMed]

Wang, X.

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).

Wei, W.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[PubMed]

West, S.

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

West, S. J.

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

Williams, J. A.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[PubMed]

Wu, W.-S.

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 86004 (2015).
[PubMed]

Wurzinger, G.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

Xia, D.

Xia, J.

J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
[PubMed]

Xia, W.

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

Yang, H.-C.

Yang, J.-M.

Yeager, D.

D. VanderLaan, A. B. Karpiouk, D. Yeager, and S. Emelianov, “Real-time intravascular ultrasound and photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 141–149 (2017).
[PubMed]

Zeng, C.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Zhang, C.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

Zhang, E.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[PubMed]

Zhang, E. Z.

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[PubMed]

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).

Zhang, H. F.

Zheng, H.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Zheng, J.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Zhou, Q.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[PubMed]

J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[PubMed]

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[PubMed]

Zou, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

ACS Photonics (1)

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

Appl. Phys. Lett. (2)

S.-W. Huang, S.-L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[PubMed]

S.-W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[PubMed]

Appl. Sci. (1)

S.-L. Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2017).

Biomed. Opt. Express (2)

Circulation (1)

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation 106(17), 2200–2206 (2002).
[PubMed]

IEEE Trans. Biomed. Eng. (1)

J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
[PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (5)

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[PubMed]

M.-L. Li, W.-J. Guan, and P.-C. Li, “Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 63–70 (2004).
[PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[PubMed]

D. VanderLaan, A. B. Karpiouk, D. Yeager, and S. Emelianov, “Real-time intravascular ultrasound and photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 141–149 (2017).
[PubMed]

S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[PubMed]

J. Acoust. Soc. Am. (1)

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[PubMed]

J. Biomed. Opt. (2)

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[PubMed]

S.-Y. Hung, W.-S. Wu, B.-Y. Hsieh, and P.-C. Li, “Concurrent photoacoustic-ultrasound imaging using single-laser pulses,” J. Biomed. Opt. 20(8), 86004 (2015).
[PubMed]

J. Biophotonics (1)

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[PubMed]

Nat. Photonics (1)

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).

Opt. Express (6)

Opt. Lett. (4)

Photoacoustics (2)

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[PubMed]

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).

PLoS One (1)

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[PubMed]

Proc. SPIE (5)

R. J. Colchester, C. A. Mosse, D. I. Nikitichev, E. Z. Zhang, S. West, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Real-time needle guidance with photoacoustic and laser-generated ultrasound probes,” Proc. SPIE 9323, 932321 (2015).

W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari, D. I. Nikitichev, S. J. West, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures,” Proc. SPIE 9539, 95390K (2015).

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).

Rev. Sci. Instrum. (1)

A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010).
[PubMed]

Ultrasound Med. Biol. (1)

J. Mamou, O. Aristizábal, R. H. Silverman, J. A. Ketterling, and D. H. Turnbull, “High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging,” Ultrasound Med. Biol. 35(7), 1198–1208 (2009).
[PubMed]

Other (1)

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in Ultrasonics Symposium (IUS, 2012), pp. 1410−1413.

Supplementary Material (2)

NameDescription
» Visualization 1       3D volume rendering PA image
» Visualization 2       3D volume rendering US image

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Picture of the fabricated fiber-tip US transmitter. (b) Photo of the constructed PA-US probe.
Fig. 2
Fig. 2 Schematic of the integrated PA-US imaging system. Inset: schematic of the miniature PA-US probe.
Fig. 3
Fig. 3 FP sensor calibration. (a) FP reflection spectrum at a wavelength range of 1500−1520 nm; Inset: FP reflection spectrum over a wider wavelength range. (b) Sensitivity calibration: FP detected US signal generated by the unfocused US transducer. (c) Schematic of frequency response calibration. (d) Frequency response calibration: FP measured time-domain signal. (e) Frequency response calibration: estimated FP frequency response. (f) Measured FP angular response.
Fig. 4
Fig. 4 Fiber US transmitter calibration. (a) Measured transmission angle of the fiber US transmitter. (b) Schematic of US pressure measurement by the ONDA hydrophone. (c) Time-domain signal measured by the ONDA hydrophone for acoustic pressure calibration. (d) Spectrum of (c)
Fig. 5
Fig. 5 (a) B-mode images before applying the crosstalk removal signal processing. (b) B-mode images after applying the crosstalk removal signal processing to (a). (c) The zoom image of the dashed box in (a). (d) The zoom image of the dashed box in (b).
Fig. 6
Fig. 6 (a) PA image of 90-µm human hairs at depths of 1−5 mm. (b) US image of 125-µm glass fibers at depths of 1−5 mm. (c) PA resolutions determined by the image at representative depth of 2 mm. (d) US resolutions determined by the image at representative depth of 2 mm. (e) PA and US spatial resolutions at different depths.
Fig. 7
Fig. 7 (a) Illustration of the phantom consisting of a 700-µm plastic tube with air inside, a 700-µm plastic tube with ink filled inside, a 200-µm black bristle, a 225-µm glass fiber, and a 100-µm steel line, which are labeled as 1−5, respectively. (b) PA image with peak SNRs of 70 and 68 dB for objects 2 and 3, respectively. (c) US image with peak SNRs of 65, 58, 52, 65, 49 dB for objects 1−5, respectively. (d) PA-US fused image. The 1 mm scale bar is for images (b)−(d).
Fig. 8
Fig. 8 PA and US images of a phantom consisting of a 200-µm black bristle and a 250-µm steel line, both with knotted structures. Image dimensions: 8 mm × 4.5 mm × 2 mm along x, y, and z axis, respectively. (a) PA MAP image on the x-y plane with a peak SNR of 62 dB. (b) US MAP image on the x-y plane with peak SNRs of 50 and 53 dB for the black bristle and the steel line, respectively. The 1 mm scale bar is for images (a) and (b). (c) 3D volume rendering PA image. (d) 3D volume rendering US image. 3D animations are available as supplementary videos: 3D volume rendering PA image (see Visualization 1) and US image (see Visualization 2).

Tables (1)

Tables Icon

Table 1 Comparison of lateral/transverse resolution and imaging depth range of miniature PA-US probes

Metrics