Abstract

In this study, a half-circled cavity based microdisk laser diode is proposed and demonstrated experimentally for an integrated photonic biochemical sensor. Conventional microdisk sensors have limitations in optical coupling and reproducibility. In order to overcome these drawbacks, we design a novel half-circled micro disk laser (HC-MDL) which is easy to manufacture and has optical output directionality. The Q-factor of the fabricated HC-MDL was measured as 7.72 × 106 using the self-heterodyne method and the side mode suppression ratio was measured as 23 dB. Moreover, gas sensing experiments were performed using the HC-MDL sensor. A wavelength shift response of 14.21 pm was obtained for 100 ppb dimethyl methylphosphonate (DMMP) gas and that of 14.70 pm was obtained for 1 ppm ethanol gas. These results indicate the possibility of highly sensitive gas detection at ppb levels using HC-MDL. This attractive feature of the HC-MDL sensor is believed to be very useful for a wide variety of optical biochemical sensor applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated label-free optical biochemical sensor with a large measurement range based on an angular grating-microring resonator

Tao Ma, Lei Sun, Jinhui Yuan, Xinzhu Sang, Binbin Yan, Kuiru Wang, and Chongxiu Yu
Appl. Opt. 55(18) 4784-4790 (2016)

Wavelength-interrogated optical sensor for biochemical applications

M. Wiki and R. E. Kunz
Opt. Lett. 25(7) 463-465 (2000)

Design guidelines for optical resonator biochemical sensors

Juejun Hu, Xiaochen Sun, Anu Agarwal, and Lionel C. Kimerling
J. Opt. Soc. Am. B 26(5) 1032-1041 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  2. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
    [Crossref]
  3. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  4. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 221107 (2005).
    [Crossref]
  5. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  6. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
    [Crossref] [PubMed]
  7. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
    [Crossref] [PubMed]
  8. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40(31), 5742–5747 (2001).
    [Crossref] [PubMed]
  9. I. G. Lee, S. M. Go, J. H. Ryu, C. H. Yi, S. B. Kim, K. R. Oh, and C. M. Kim, “Unidirectional emission from a cardioid-shaped microcavity laser,” Opt. Express 24(3), 2253–2258 (2016).
    [Crossref] [PubMed]
  10. M. W. Kim, C. H. Yi, S. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, “Directional single mode emission in a microcavity laser,” Opt. Express 20(13), 13651–13656 (2012).
    [Crossref] [PubMed]
  11. Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
    [Crossref]
  12. D. A. Francis, C. J. Chang-Hasnain, and K. Eason, “Effect of facet roughness on etched-facet semiconductor laser diodes,” Appl. Phys. Lett. 68(12), 68–70 (1996).
    [Crossref]
  13. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
    [Crossref]
  14. L.E. Richter, H.I. Mandelberg, M.S. Kruger, and P.A. McGrath, “Linewidth determination from self-heterodyne Measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]

2016 (2)

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

I. G. Lee, S. M. Go, J. H. Ryu, C. H. Yi, S. B. Kim, K. R. Oh, and C. M. Kim, “Unidirectional emission from a cardioid-shaped microcavity laser,” Opt. Express 24(3), 2253–2258 (2016).
[Crossref] [PubMed]

2015 (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (2)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

M. W. Kim, C. H. Yi, S. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, “Directional single mode emission in a microcavity laser,” Opt. Express 20(13), 13651–13656 (2012).
[Crossref] [PubMed]

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2005 (1)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 221107 (2005).
[Crossref]

2004 (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

2001 (1)

1996 (1)

D. A. Francis, C. J. Chang-Hasnain, and K. Eason, “Effect of facet roughness on etched-facet semiconductor laser diodes,” Appl. Phys. Lett. 68(12), 68–70 (1996).
[Crossref]

1991 (1)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

1986 (1)

L.E. Richter, H.I. Mandelberg, M.S. Kruger, and P.A. McGrath, “Linewidth determination from self-heterodyne Measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Bailey, R. C.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Boyd, R. W.

Chang-Hasnain, C. J.

D. A. Francis, C. J. Chang-Hasnain, and K. Eason, “Effect of facet roughness on etched-facet semiconductor laser diodes,” Appl. Phys. Lett. 68(12), 68–70 (1996).
[Crossref]

Cheung, K. C.

Choi, M.

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Chrostowski, L.

Donzella, V.

Eason, K.

D. A. Francis, C. J. Chang-Hasnain, and K. Eason, “Effect of facet roughness on etched-facet semiconductor laser diodes,” Appl. Phys. Lett. 68(12), 68–70 (1996).
[Crossref]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 221107 (2005).
[Crossref]

Flueckiger, J.

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Francis, D. A.

D. A. Francis, C. J. Chang-Hasnain, and K. Eason, “Effect of facet roughness on etched-facet semiconductor laser diodes,” Appl. Phys. Lett. 68(12), 68–70 (1996).
[Crossref]

Go, S. M.

Grist, S. M.

Han, J. H.

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 221107 (2005).
[Crossref]

Heebner, J. E.

Kim, C. M.

Kim, I.

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Kim, J. H.

Kim, M. W.

Kim, S. B.

Kim, Y.

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Kirk, J. T.

Kruger, M.S.

L.E. Richter, H.I. Mandelberg, M.S. Kruger, and P.A. McGrath, “Linewidth determination from self-heterodyne Measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Lee, I. G.

Lee, S. H.

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Mandelberg, H.I.

L.E. Richter, H.I. Mandelberg, M.S. Kruger, and P.A. McGrath, “Linewidth determination from self-heterodyne Measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

McGrath, P.A.

L.E. Richter, H.I. Mandelberg, M.S. Kruger, and P.A. McGrath, “Linewidth determination from self-heterodyne Measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Mercer, L. B.

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

Min, B.

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Oh, K. R.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 221107 (2005).
[Crossref]

Ratner, D. M.

Richter, L.E.

L.E. Richter, H.I. Mandelberg, M.S. Kruger, and P.A. McGrath, “Linewidth determination from self-heterodyne Measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Rim, S.

Ryu, J. H.

Ryu, J. W.

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Schmidt, S. A.

Shi, W.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 221107 (2005).
[Crossref]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Tae, H. S.

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Talebi Fard, S.

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 221107 (2005).
[Crossref]

Yi, C. H.

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. A. Francis, C. J. Chang-Hasnain, and K. Eason, “Effect of facet roughness on etched-facet semiconductor laser diodes,” Appl. Phys. Lett. 68(12), 68–70 (1996).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 221107 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

L.E. Richter, H.I. Mandelberg, M.S. Kruger, and P.A. McGrath, “Linewidth determination from self-heterodyne Measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

J. Lightwave Technol. (1)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Kim, S. H. Lee, J. W. Ryu, I. Kim, J. H. Han, H. S. Tae, M. Choi, and B. Min, “Designing whispering gallery modes via transformation optics,” Nat. Photonics 10(10), 647–653 (2016).
[Crossref]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the proposed HC-MDL sensor structure.
Fig. 2
Fig. 2 Microscope images (a) The photolithography image of the HC-MDL to obtain the air-bridge (b) Deep-etched facet image of the HC-MDL using SEM
Fig. 3
Fig. 3 Operation characteristics of the HC-MDL. (a) Lasing spectrum of the HC-MDL. (b) Far field pattern
Fig. 4
Fig. 4 Experimental setup of the self-heterodyne to detect a high Q-factor.
Fig. 5
Fig. 5 Self-heterodyne beating signal of the HC-MDL.
Fig. 6
Fig. 6 Experiment setup for gas sensing using the vacuum chamber. (a) Measurement stage on the optical table. (b) Measurement of the HC-MDL in the vacuum chamber.
Fig. 7
Fig. 7 Gas sensing experiment. (a) Target gas flow chart. (b) Wavelength shift of the HC-MDL according to the changes in the gas concentration in the chamber. (c) Output power variations according to the target gas injection (d) Changes of the lasing wavelength for the ethanol gas injection. (e) Changes of the lasing wavelength for the DMMP gas injection.

Metrics