Abstract

The high efficiency acousto-optic modulators become indispensable in photonics and optoelectronics for the pulse generation and signal modulation in optical display and telecommunications. In this paper, the validity and feasibility of the biaxial crystals as acousto-optic mediums have been theoretically analyzed and confirmed by experiments using a biaxial crystal of β-BaTeMo2O9. The diffraction angle and diffraction efficiency of the β-BaTeMo2O9 acousto-optic Q-switch are determined to be 1.420° and 78.1%, which are comparable with that of TeO2 acousto-optic modulator at the identical operating wavelength of 1064 nm and 100 MHz, respectively. The minimum of the modulated pulse width can be achieved to be 6 ns at 5 kHz with Nd:YVO4 as the gain medium. The results not only provide an excellent acousto-optic medium, but also explore the field of biaxial acousto-optic medium for device fabrications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient diode end-pumped acousto-optically Q-switched Nd:YAG/BaTeMo2O9 Raman laser

Fen Bai, Qingpu Wang, Zhiyong Jiao, Xianfeng Xu, Hui Zhang, and Xutang Tao
Appl. Opt. 55(32) 9265-9269 (2016)

Biaxial crystal α-BaTeMo2O9: theory study of large birefringence and wide-band polarized prisms design

Z. L. Gao, Q. Wu, X. T. Liu, Y. X. Sun, and X. T. Tao
Opt. Express 23(4) 3851-3860 (2015)

High-power and high-contrast optical parametric chirped pulse amplification in β-BaB2O4 crystal

H. Yoshida, E. Ishii, R. Kodama, H. Fujita, Y. Kitagawa, Y. Izawa, and T. Yamanaka
Opt. Lett. 28(4) 257-259 (2003)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Berg and J. M. Pellegrino, Acousto-optic Signal Processing: Theory and Implementation, 2nd ed. (Opt Eng, v. 51, 1996).
  2. N. Savage, “Acousto-optic devices,” Nat. Photonics 4, 728–729 (2010).
  3. S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
    [PubMed]
  4. D. Burger and R. Gershman, “Acousto-optic laser-scanning cytometer,” Cytometry 9(2), 101–110 (1988).
    [PubMed]
  5. D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: A melt-grown crystal with a high figure of merit for acousto-optic device application,” Appl. Phys. Lett. 15(3), 82-86 (1969).
  6. P. Maak, M. Veress, B. Rozsa, R. Szipocs, and P. Richter, “Acousto-optic materials for special applications with ultra-short optical pulses,” Phys. Status. Solid. C. 8(9), 2885–2889 (2011).
  7. N. Uchida, “Elastooptic coefficient of liquids determined by ultrasonic light diffraction method,” J. Appl. Phys. 7(10), 1259–1266 (1968).
  8. C. V. Raman and K. S. Venkataraman, “Determination of the adiabatic piezo-optic coefficient of liquid,” Proc. Roy. Soc. 171(945), 137–147 (1939).
  9. T. Yano, A. Fukumoto, and A. Watanabe, “Tellurite Glass: A new acousto-optic material,” J. Appl. Phys. 42(10), 3673–3676 (1971).
  10. N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61(8), 1073–1092 (1973).
  11. N. Uchida and Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).
  12. G. Arlt and H. Schweppe, “Paratellurite, a new piezoelectric material,” Solid State Commun. 6(11), 783–784 (1968).
  13. J. Liebertz, “Einkristallizuchtung von Paratellurit (TeO2),” Krostall und Technik. 4(2), 221–225 (1969).
  14. D. A. Pinnow, “Guide lines for selection of acousto-optic materials,” IEEE J. Quantum Electron. 6(4), 223–238 (1970).
  15. P. S. Halasyamani, “Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-octahedral Distance in d0 Transition Metals,” Chem. Mater. 16(19), 3586–3592 (2004).
  16. H. S. Ra, K. M. Ok, and P. S. Halasyamani, “Combining Second-order Jahn-Teller Distorted Cations to Create Highly Efficient SHG Materials: Synthesis, Characterization, and NLO Properties of BaTeM2O9 (M = Mo6+ or W6+),” J. Am. Chem. Soc. 125(26), 7764–7765 (2003).
    [PubMed]
  17. W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).
  18. W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, and M. H. Jiang, “Structure and thermal properties of the nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 9(6), 2633–2636 (2009).
  19. Z. L. Gao, Q. Wu, X. T. Liu, Y. X. Sun, and X. T. Tao, “Biaxial crystal α-BaTeMo2O9: theory study of large birefringence and wide-band polarized prisms design,” Opt. Express 23(4), 3851–3860 (2015).
    [PubMed]
  20. S. K. Yao, and E. H. Young, Modulators and Demodulators, Optical (Wiley-VCH Verlag GmbH & Co KGaA. 2004).
  21. B. E. A. Saleh, and M. C. Teich, Acousto-optics (John Wiley & Sons, Inc., 2001).
  22. Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, “Elastic, dielectric, and piezoelectric properties of single crystal,” Appl. Phys. Lett. 93(25), 252906 (2008).

2015 (1)

2014 (1)

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[PubMed]

2011 (1)

P. Maak, M. Veress, B. Rozsa, R. Szipocs, and P. Richter, “Acousto-optic materials for special applications with ultra-short optical pulses,” Phys. Status. Solid. C. 8(9), 2885–2889 (2011).

2010 (1)

N. Savage, “Acousto-optic devices,” Nat. Photonics 4, 728–729 (2010).

2009 (1)

W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, and M. H. Jiang, “Structure and thermal properties of the nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 9(6), 2633–2636 (2009).

2008 (2)

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, “Elastic, dielectric, and piezoelectric properties of single crystal,” Appl. Phys. Lett. 93(25), 252906 (2008).

2004 (1)

P. S. Halasyamani, “Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-octahedral Distance in d0 Transition Metals,” Chem. Mater. 16(19), 3586–3592 (2004).

2003 (1)

H. S. Ra, K. M. Ok, and P. S. Halasyamani, “Combining Second-order Jahn-Teller Distorted Cations to Create Highly Efficient SHG Materials: Synthesis, Characterization, and NLO Properties of BaTeM2O9 (M = Mo6+ or W6+),” J. Am. Chem. Soc. 125(26), 7764–7765 (2003).
[PubMed]

1988 (1)

D. Burger and R. Gershman, “Acousto-optic laser-scanning cytometer,” Cytometry 9(2), 101–110 (1988).
[PubMed]

1973 (1)

N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61(8), 1073–1092 (1973).

1971 (1)

T. Yano, A. Fukumoto, and A. Watanabe, “Tellurite Glass: A new acousto-optic material,” J. Appl. Phys. 42(10), 3673–3676 (1971).

1970 (1)

D. A. Pinnow, “Guide lines for selection of acousto-optic materials,” IEEE J. Quantum Electron. 6(4), 223–238 (1970).

1969 (3)

J. Liebertz, “Einkristallizuchtung von Paratellurit (TeO2),” Krostall und Technik. 4(2), 221–225 (1969).

N. Uchida and Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).

D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: A melt-grown crystal with a high figure of merit for acousto-optic device application,” Appl. Phys. Lett. 15(3), 82-86 (1969).

1968 (2)

N. Uchida, “Elastooptic coefficient of liquids determined by ultrasonic light diffraction method,” J. Appl. Phys. 7(10), 1259–1266 (1968).

G. Arlt and H. Schweppe, “Paratellurite, a new piezoelectric material,” Solid State Commun. 6(11), 783–784 (1968).

1939 (1)

C. V. Raman and K. S. Venkataraman, “Determination of the adiabatic piezo-optic coefficient of liquid,” Proc. Roy. Soc. 171(945), 137–147 (1939).

Arlt, G.

G. Arlt and H. Schweppe, “Paratellurite, a new piezoelectric material,” Solid State Commun. 6(11), 783–784 (1968).

Bonner, W. A.

D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: A melt-grown crystal with a high figure of merit for acousto-optic device application,” Appl. Phys. Lett. 15(3), 82-86 (1969).

Burger, D.

D. Burger and R. Gershman, “Acousto-optic laser-scanning cytometer,” Cytometry 9(2), 101–110 (1988).
[PubMed]

Cheng, X. F.

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Fukumoto, A.

T. Yano, A. Fukumoto, and A. Watanabe, “Tellurite Glass: A new acousto-optic material,” J. Appl. Phys. 42(10), 3673–3676 (1971).

Gao, Z. L.

Z. L. Gao, Q. Wu, X. T. Liu, Y. X. Sun, and X. T. Tao, “Biaxial crystal α-BaTeMo2O9: theory study of large birefringence and wide-band polarized prisms design,” Opt. Express 23(4), 3851–3860 (2015).
[PubMed]

Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, “Elastic, dielectric, and piezoelectric properties of single crystal,” Appl. Phys. Lett. 93(25), 252906 (2008).

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Gershman, R.

D. Burger and R. Gershman, “Acousto-optic laser-scanning cytometer,” Cytometry 9(2), 101–110 (1988).
[PubMed]

Halasyamani, P. S.

P. S. Halasyamani, “Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-octahedral Distance in d0 Transition Metals,” Chem. Mater. 16(19), 3586–3592 (2004).

H. S. Ra, K. M. Ok, and P. S. Halasyamani, “Combining Second-order Jahn-Teller Distorted Cations to Create Highly Efficient SHG Materials: Synthesis, Characterization, and NLO Properties of BaTeM2O9 (M = Mo6+ or W6+),” J. Am. Chem. Soc. 125(26), 7764–7765 (2003).
[PubMed]

Jiang, M. H.

W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, and M. H. Jiang, “Structure and thermal properties of the nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 9(6), 2633–2636 (2009).

Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, “Elastic, dielectric, and piezoelectric properties of single crystal,” Appl. Phys. Lett. 93(25), 252906 (2008).

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Li, M.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[PubMed]

Liebertz, J.

J. Liebertz, “Einkristallizuchtung von Paratellurit (TeO2),” Krostall und Technik. 4(2), 221–225 (1969).

Liu, X. S.

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Liu, X. T.

Maak, P.

P. Maak, M. Veress, B. Rozsa, R. Szipocs, and P. Richter, “Acousto-optic materials for special applications with ultra-short optical pulses,” Phys. Status. Solid. C. 8(9), 2885–2889 (2011).

Niizeki, N.

N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61(8), 1073–1092 (1973).

Ohmachi, Y.

N. Uchida and Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).

Ok, K. M.

H. S. Ra, K. M. Ok, and P. S. Halasyamani, “Combining Second-order Jahn-Teller Distorted Cations to Create Highly Efficient SHG Materials: Synthesis, Characterization, and NLO Properties of BaTeM2O9 (M = Mo6+ or W6+),” J. Am. Chem. Soc. 125(26), 7764–7765 (2003).
[PubMed]

Pinnow, D. A.

D. A. Pinnow, “Guide lines for selection of acousto-optic materials,” IEEE J. Quantum Electron. 6(4), 223–238 (1970).

D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: A melt-grown crystal with a high figure of merit for acousto-optic device application,” Appl. Phys. Lett. 15(3), 82-86 (1969).

Ra, H. S.

H. S. Ra, K. M. Ok, and P. S. Halasyamani, “Combining Second-order Jahn-Teller Distorted Cations to Create Highly Efficient SHG Materials: Synthesis, Characterization, and NLO Properties of BaTeM2O9 (M = Mo6+ or W6+),” J. Am. Chem. Soc. 125(26), 7764–7765 (2003).
[PubMed]

Raman, C. V.

C. V. Raman and K. S. Venkataraman, “Determination of the adiabatic piezo-optic coefficient of liquid,” Proc. Roy. Soc. 171(945), 137–147 (1939).

Richter, P.

P. Maak, M. Veress, B. Rozsa, R. Szipocs, and P. Richter, “Acousto-optic materials for special applications with ultra-short optical pulses,” Phys. Status. Solid. C. 8(9), 2885–2889 (2011).

Rozsa, B.

P. Maak, M. Veress, B. Rozsa, R. Szipocs, and P. Richter, “Acousto-optic materials for special applications with ultra-short optical pulses,” Phys. Status. Solid. C. 8(9), 2885–2889 (2011).

Savage, N.

N. Savage, “Acousto-optic devices,” Nat. Photonics 4, 728–729 (2010).

Schweppe, H.

G. Arlt and H. Schweppe, “Paratellurite, a new piezoelectric material,” Solid State Commun. 6(11), 783–784 (1968).

Sun, Y. X.

Z. L. Gao, Q. Wu, X. T. Liu, Y. X. Sun, and X. T. Tao, “Biaxial crystal α-BaTeMo2O9: theory study of large birefringence and wide-band polarized prisms design,” Opt. Express 23(4), 3851–3860 (2015).
[PubMed]

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Szipocs, R.

P. Maak, M. Veress, B. Rozsa, R. Szipocs, and P. Richter, “Acousto-optic materials for special applications with ultra-short optical pulses,” Phys. Status. Solid. C. 8(9), 2885–2889 (2011).

Tadesse, S. A.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[PubMed]

Tao, X. T.

Z. L. Gao, Q. Wu, X. T. Liu, Y. X. Sun, and X. T. Tao, “Biaxial crystal α-BaTeMo2O9: theory study of large birefringence and wide-band polarized prisms design,” Opt. Express 23(4), 3851–3860 (2015).
[PubMed]

W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, and M. H. Jiang, “Structure and thermal properties of the nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 9(6), 2633–2636 (2009).

Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, “Elastic, dielectric, and piezoelectric properties of single crystal,” Appl. Phys. Lett. 93(25), 252906 (2008).

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Uchida, N.

N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61(8), 1073–1092 (1973).

N. Uchida and Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).

N. Uchida, “Elastooptic coefficient of liquids determined by ultrasonic light diffraction method,” J. Appl. Phys. 7(10), 1259–1266 (1968).

Van Uitert, L. G.

D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: A melt-grown crystal with a high figure of merit for acousto-optic device application,” Appl. Phys. Lett. 15(3), 82-86 (1969).

Venkataraman, K. S.

C. V. Raman and K. S. Venkataraman, “Determination of the adiabatic piezo-optic coefficient of liquid,” Proc. Roy. Soc. 171(945), 137–147 (1939).

Veress, M.

P. Maak, M. Veress, B. Rozsa, R. Szipocs, and P. Richter, “Acousto-optic materials for special applications with ultra-short optical pulses,” Phys. Status. Solid. C. 8(9), 2885–2889 (2011).

Warner, A. W.

D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: A melt-grown crystal with a high figure of merit for acousto-optic device application,” Appl. Phys. Lett. 15(3), 82-86 (1969).

Watanabe, A.

T. Yano, A. Fukumoto, and A. Watanabe, “Tellurite Glass: A new acousto-optic material,” J. Appl. Phys. 42(10), 3673–3676 (1971).

Wu, Q.

Yano, T.

T. Yano, A. Fukumoto, and A. Watanabe, “Tellurite Glass: A new acousto-optic material,” J. Appl. Phys. 42(10), 3673–3676 (1971).

Yin, X.

Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, “Elastic, dielectric, and piezoelectric properties of single crystal,” Appl. Phys. Lett. 93(25), 252906 (2008).

Yu, W. T.

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Zhang, C. Q.

W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, and M. H. Jiang, “Structure and thermal properties of the nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 9(6), 2633–2636 (2009).

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Zhang, H. J.

W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, and M. H. Jiang, “Structure and thermal properties of the nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 9(6), 2633–2636 (2009).

Zhang, W. G.

W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, and M. H. Jiang, “Structure and thermal properties of the nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 9(6), 2633–2636 (2009).

Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, “Elastic, dielectric, and piezoelectric properties of single crystal,” Appl. Phys. Lett. 93(25), 252906 (2008).

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

Appl. Phys. Lett. (2)

D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: A melt-grown crystal with a high figure of merit for acousto-optic device application,” Appl. Phys. Lett. 15(3), 82-86 (1969).

Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang, and M. H. Jiang, “Elastic, dielectric, and piezoelectric properties of single crystal,” Appl. Phys. Lett. 93(25), 252906 (2008).

Chem. Mater. (1)

P. S. Halasyamani, “Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-octahedral Distance in d0 Transition Metals,” Chem. Mater. 16(19), 3586–3592 (2004).

Cryst. Growth Des. (2)

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. X. Sun, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 305–307 (2008).

W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, and M. H. Jiang, “Structure and thermal properties of the nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 9(6), 2633–2636 (2009).

Cytometry (1)

D. Burger and R. Gershman, “Acousto-optic laser-scanning cytometer,” Cytometry 9(2), 101–110 (1988).
[PubMed]

IEEE J. Quantum Electron. (1)

D. A. Pinnow, “Guide lines for selection of acousto-optic materials,” IEEE J. Quantum Electron. 6(4), 223–238 (1970).

J. Am. Chem. Soc. (1)

H. S. Ra, K. M. Ok, and P. S. Halasyamani, “Combining Second-order Jahn-Teller Distorted Cations to Create Highly Efficient SHG Materials: Synthesis, Characterization, and NLO Properties of BaTeM2O9 (M = Mo6+ or W6+),” J. Am. Chem. Soc. 125(26), 7764–7765 (2003).
[PubMed]

J. Appl. Phys. (3)

T. Yano, A. Fukumoto, and A. Watanabe, “Tellurite Glass: A new acousto-optic material,” J. Appl. Phys. 42(10), 3673–3676 (1971).

N. Uchida and Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).

N. Uchida, “Elastooptic coefficient of liquids determined by ultrasonic light diffraction method,” J. Appl. Phys. 7(10), 1259–1266 (1968).

Krostall und Technik. (1)

J. Liebertz, “Einkristallizuchtung von Paratellurit (TeO2),” Krostall und Technik. 4(2), 221–225 (1969).

Nat. Commun. (1)

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[PubMed]

Nat. Photonics (1)

N. Savage, “Acousto-optic devices,” Nat. Photonics 4, 728–729 (2010).

Opt. Express (1)

Phys. Status. Solid. C. (1)

P. Maak, M. Veress, B. Rozsa, R. Szipocs, and P. Richter, “Acousto-optic materials for special applications with ultra-short optical pulses,” Phys. Status. Solid. C. 8(9), 2885–2889 (2011).

Proc. IEEE (1)

N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61(8), 1073–1092 (1973).

Proc. Roy. Soc. (1)

C. V. Raman and K. S. Venkataraman, “Determination of the adiabatic piezo-optic coefficient of liquid,” Proc. Roy. Soc. 171(945), 137–147 (1939).

Solid State Commun. (1)

G. Arlt and H. Schweppe, “Paratellurite, a new piezoelectric material,” Solid State Commun. 6(11), 783–784 (1968).

Other (3)

N. J. Berg and J. M. Pellegrino, Acousto-optic Signal Processing: Theory and Implementation, 2nd ed. (Opt Eng, v. 51, 1996).

S. K. Yao, and E. H. Young, Modulators and Demodulators, Optical (Wiley-VCH Verlag GmbH & Co KGaA. 2004).

B. E. A. Saleh, and M. C. Teich, Acousto-optics (John Wiley & Sons, Inc., 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The principle diagram of the A/O interaction in the A/O modulator. 1. Electrode Layer. 2, Piezoelectric Transducer. 3, Electrode Layer. 4, Bonding Layer. 5, Electrode Layer. 6, Acousto-optic material.
Fig. 2
Fig. 2 a, The refractive-index ellipsoid of the biaxial crystal. b, The refractive-index ellipse with light propagating along one axis for the biaxial crystal. c, The refractive-index ellipsoid of the uniaxial crystal. d, The refractive-index ellipse with light propagating along one axis for the uniaxial crystal.
Fig. 3
Fig. 3 The completed A/O device made by β-BTM. a, The internal structure diagram of the A/O modulator element. b, The packaged A/O modulator element. c, The driver electronics unit of the β-BTM A/O modulator.
Fig. 4
Fig. 4 The experimental configuration to evaluate the A/O properties of the β-BTM.
Fig. 5
Fig. 5 β-BTM A/O modulation pulse width and the minimum pulses with Nd:YAG as gain medium. a) The modulation pulse width of continuous-wave laser. b) The typical modulation pulse of continuous-wave laser operated.
Fig. 6
Fig. 6 β-BTM A/O modulation pulse width and the typical minimum pulse with Nd:YVO4 as gain medium. a) The modulation pulse width versus input power with continuous-wave laser operated in horizontal polarization. b). The modulation pulse of continuous-wave laser operated by Nd:YVO4 in horizontal polarization. c) The modulation pulse width versus input power with continuous-wave laser operated in vertical polarization. d) The typical modulation pulse of continuous-wave laser in vertical polarization.
Fig. 7
Fig. 7 The pulse trains of the β-BTM A/O modulator at the incident pump power of 3 W.

Tables (1)

Tables Icon

Table 1 Properties of widely used materials for A/O modulator

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x 2 n x 2 + y 2 n y 2 + z 2 n z 2 = 1 x 2 ( n x + Δ n x ) 2 + y 2 ( n y + Δ n y ) 2 + z 2 ( n z + Δ n z ) 2 = 1
x 2 ( n x + Δ n x ) 2 + y 2 ( n y + Δ n y ) 2 = 1 Δ n x = 1 2 n x 3 p 13 S 3 Δ n y = 1 2 n y 3 p 23 S 3 }

Metrics