Abstract

The land surface temperature (LST) is a key parameter for energy balance, evapotranspiration and climate change. In this study, two new methods of LST retrieval from passive microwave data are developed: one is deriving LST only using single-channel dual-polarized data based on the relationship between the emissivity and microwave polarization difference index (MPDI) (denoted as Method 1); the other one is deriving LST using the traditional multi-channel method with prior knowledge of the normalized difference vegetation index (NDVI) (denoted as Method 3). Taking Moderate Resolution Imaging Spectroradiometer (MODIS) LST products as the actual LSTs, the coefficients for these algorithms are determined. From the results for the year 2008, it is demonstrated that the root mean square errors (RMSEs) for the LST retrieval using Method 3 are the smallest and range from 2.92 K to 3.44 K, the RMSEs for the LST retrieval using traditional multi-channel method (denoted as Method 2) range from 3.07 K to 4.05 K, and the worst results come from Method 1, whose RMSEs range from 3.11 K to 4.13 K at a frequency of 89 GHz. This could be caused by the fact that the NDVI provides substantial emissivity knowledge in Method 3, and much richer vegetation could result in a more accurate emissivity estimation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data

Yong-Gang Qian, Ning Wang, Ling-Ling Ma, Yao-Kai Liu, Hua Wu, Bo-Hui Tang, Ling-Li Tang, and Chuan-Rong Li
Opt. Express 24(2) A257-A269 (2016)

Atmospheric corrections of passive microwave data for estimating land surface temperature

Zeng-Lin Liu, Hua Wu, Bo-Hui Tang, Shi Qiu, and Zhao-Liang Li
Opt. Express 21(13) 15654-15663 (2013)

Retrievals of all-weather daytime land surface temperature from FengYun-2D data

Xiaoyu Zhang, Chenguang Wang, Hong Zhao, and Zehui Lu
Opt. Express 25(22) 27210-27224 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48(4), RG4004 (2010).
    [Crossref]
  2. A. Basist, N. C. Grody, T. C. Peterson, and C. N. Williams, “Using the Special Sensor Microwave/Imager to monitor land surface temperatures, wetness, and snow cover,” J. Appl. Meteorol. 37(9), 888–911 (1998).
    [Crossref]
  3. C. André, C. Ottlé, A. Royer, and F. Maignan, “Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data,” Remote Sens. Environ. 162, 1–10 (2015).
    [Crossref]
  4. Y.-G. Qian, N. Wang, L.-L. Ma, Y.-K. Liu, H. Wu, B.-H. Tang, L.-L. Tang, and C.-R. Li, “Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data,” Opt. Express 24(2), A257–A269 (2016).
    [Crossref] [PubMed]
  5. F. N. Kogan, “Operational space technology for global vegetation assessment,” Bull. Am. Meteorol. Soc. 82(9), 1949–1964 (2001).
    [Crossref]
  6. Z. Su, “The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes,” Hydrol. Earth Syst. Sci. Discuss. 6(1), 85–100 (2002).
    [Crossref]
  7. R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
    [Crossref] [PubMed]
  8. Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
    [Crossref]
  9. D. A. Efthymiadis and P. D. Jones, “Assessment of maximum possible urbanization influences on land temperature data by comparison of land and marine data around coasts,” Atmosphere 1(1), 51–61 (2010).
    [Crossref]
  10. J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
    [Crossref]
  11. F. Becker and Z.-L. Li, “Temperature-independent spectral indices in thermal infrared bands,” Remote Sens. Environ. 32(1), 17–33 (1990).
    [Crossref]
  12. P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, “Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends,” Int. J. Remote Sens. 23(13), 2563–2594 (2002).
    [Crossref]
  13. S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
    [Crossref]
  14. Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
    [Crossref]
  15. F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Remote Sens. 11(3), 369–393 (1990).
    [Crossref]
  16. Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34(4), 892–905 (1996).
    [Crossref]
  17. X. Zhang and L. Li, “A method to estimate land surface temperature from Meteosat Second Generation data using multi-temporal data,” Opt. Express 21(26), 31907–31918 (2013).
    [Crossref] [PubMed]
  18. A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
    [Crossref]
  19. C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS Land Surface Temperature and emissivity separation algorithm with ground measurements over a rice paddy,” IEEE Trans. Geosci. Remote Sens. 54(5), 3061–3069 (2016).
    [Crossref]
  20. X. OuYang, N. Wang, H. Wu, and Z. L. Li, “Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data,” Opt. Express 18(2), 544–550 (2010).
    [Crossref] [PubMed]
  21. J. C. Jimenez-Muñoz and J. A. Sobrino, “A generalized single‐channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res., D Atmospheres 108, 4688 (2003).
    [Crossref]
  22. Z. Qin, A. Karnieli, and P. Berliner, “A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region,” Int. J. Remote Sens. 22(18), 3719–3746 (2001).
    [Crossref]
  23. Z.-L. Liu, H. Wu, B.-H. Tang, S. Qiu, and Z.-L. Li, “Atmospheric corrections of passive microwave data for estimating land surface temperature,” Opt. Express 21(13), 15654–15663 (2013).
    [Crossref] [PubMed]
  24. F. Weng and N. C. Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res., D, Atmospheres 103(D8), 8839–8848 (1998).
    [Crossref]
  25. M. Fily, A. Royer, K. Goıta, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
    [Crossref]
  26. A. Royer and S. Poirier, “Surface temperature spatial and temporal variations in North America from homogenized satellite SMMR‐SSM/I microwave measurements and reanalysis for 1979–2008,” J. Geophys. Res., D, Atmospheres 115, D08110 (2010).
    [Crossref]
  27. H. Gao, R. Fu, R. E. Dickinson, and R. I. Negron Juare, “A practical method for retrieving land surface temperature from AMSR-E over the amazon forest,” IEEE Trans. Geosci. Remote Sens. 46(1), 193–199 (2008).
    [Crossref]
  28. M. J. McFarland, R. L. Miller, and C. M. Neale, “Land surface temperature derived from the SSM/I passive microwave brightness temperatures,” IEEE Trans. Geosci. Remote Sens. 28(5), 839–845 (1990).
    [Crossref]
  29. M. Owe and A. Van De Griend, “On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions,” Int. J. Remote Sens. 22(17), 3521–3532 (2001).
    [Crossref]
  30. T. Holmes, R. De Jeu, M. Owe, and A. Dolman, “Land surface temperature from Ka band (37 GHz) passive microwave observations,” J. Geophys. Res., D, Atmospheres 114, D04113 (2009).
    [Crossref]
  31. S. Chen, X. Chen, W. Chen, Y. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
    [Crossref]
  32. M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
    [Crossref]
  33. J. Zhou, F. Dai, X. Zhang, S. Zhao, and M. Li, “Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass,” Int. J. Appl. Earth Obs. Geoinf. 34, 35–50 (2015).
    [Crossref]
  34. L. M. Zurk, D. Davis, E. G. Njoku, L. Tsang, and J.-N. Hwang, “Inversion of parameters for semiarid regions by a neural network,” NASA Tech. Rep. 19930063847 (1992).
    [Crossref]
  35. F. Aires, C. Prigent, W. Rossow, and M. Rothstein, “A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations,” J. Geophys. Res., D, Atmospheres 106(D14), 14887–14907 (2001).
    [Crossref]
  36. C. Gao, X. Jiang, Y. Qian, S. Qiu, L. Ma, and Z.-l. Li, “A neural network based method for land surface temperature retrieval from AMSR-E passive microwave data,” in Geoscience and Remote Sensing Symposium (IGARSS),2013IEEE International, (IEEE, 2013), 469–472.
    [Crossref]
  37. Z. Liu, B. Tang, and Z. Li, “Calculation of land surface temperature based on AMSR-E data,” Science & Technology Review, 24–27 (2009).
  38. J. Gomes, “Late-quaternary landscape dynamics in the Iberian Peninsula and Balearic Islands,” (Dissertation, Universidade do Porto, Portugal, 2007).
  39. “AMSR-E/Aqua Daily Gridded Brightness Temperatures”, retrieved http://nsidc.org/data/docs/daac/nsidc0301_amsre_gridded_tb.gd.html .
  40. Z. Wan, “MYD11B1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 6km SIN Grid V006. NASA EOSDIS Land Processes DAAC.” (2015), retrieved https://doi.org/10.5067/MODIS/MYD11B1.006 .
  41. K. Didan, MYD13A3 MODIS/Aqua Vegetation Indices Monthly L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. ” (2015), retrieved https://doi.org/10.5067/MODIS/MYD13A3.006 .
  42. E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
    [Crossref]
  43. F. T. Ulaby, R. K. Moore, and A. K. Fung, “Microwave remote sensing active and passive-volume III: from theory to applications,” (1986).
  44. F.-C. Zhou, X. Song, P. Leng, and Z.-L. Li, “An Effective Emission Depth Model for Passive Microwave Remote Sensing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(4), 1752–1760 (2016).
    [Crossref]
  45. K. Mao, “The study of algorithm for retrieving land surface temperature and soil moisture from thermal and microwave data,” MS thesis, Inst. Remote Sens. Appl., Chin. Acad. Sci., Univ. Chin. Acad. Sci., Beijing, China, Tech. Rep, 216 (2007).

2017 (2)

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

2016 (3)

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS Land Surface Temperature and emissivity separation algorithm with ground measurements over a rice paddy,” IEEE Trans. Geosci. Remote Sens. 54(5), 3061–3069 (2016).
[Crossref]

F.-C. Zhou, X. Song, P. Leng, and Z.-L. Li, “An Effective Emission Depth Model for Passive Microwave Remote Sensing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(4), 1752–1760 (2016).
[Crossref]

Y.-G. Qian, N. Wang, L.-L. Ma, Y.-K. Liu, H. Wu, B.-H. Tang, L.-L. Tang, and C.-R. Li, “Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data,” Opt. Express 24(2), A257–A269 (2016).
[Crossref] [PubMed]

2015 (2)

J. Zhou, F. Dai, X. Zhang, S. Zhao, and M. Li, “Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass,” Int. J. Appl. Earth Obs. Geoinf. 34, 35–50 (2015).
[Crossref]

C. André, C. Ottlé, A. Royer, and F. Maignan, “Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data,” Remote Sens. Environ. 162, 1–10 (2015).
[Crossref]

2013 (3)

2012 (1)

M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
[Crossref]

2011 (1)

S. Chen, X. Chen, W. Chen, Y. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

2010 (4)

X. OuYang, N. Wang, H. Wu, and Z. L. Li, “Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data,” Opt. Express 18(2), 544–550 (2010).
[Crossref] [PubMed]

A. Royer and S. Poirier, “Surface temperature spatial and temporal variations in North America from homogenized satellite SMMR‐SSM/I microwave measurements and reanalysis for 1979–2008,” J. Geophys. Res., D, Atmospheres 115, D08110 (2010).
[Crossref]

J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48(4), RG4004 (2010).
[Crossref]

D. A. Efthymiadis and P. D. Jones, “Assessment of maximum possible urbanization influences on land temperature data by comparison of land and marine data around coasts,” Atmosphere 1(1), 51–61 (2010).
[Crossref]

2009 (1)

T. Holmes, R. De Jeu, M. Owe, and A. Dolman, “Land surface temperature from Ka band (37 GHz) passive microwave observations,” J. Geophys. Res., D, Atmospheres 114, D04113 (2009).
[Crossref]

2008 (2)

H. Gao, R. Fu, R. E. Dickinson, and R. I. Negron Juare, “A practical method for retrieving land surface temperature from AMSR-E over the amazon forest,” IEEE Trans. Geosci. Remote Sens. 46(1), 193–199 (2008).
[Crossref]

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
[Crossref] [PubMed]

2003 (2)

J. C. Jimenez-Muñoz and J. A. Sobrino, “A generalized single‐channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res., D Atmospheres 108, 4688 (2003).
[Crossref]

M. Fily, A. Royer, K. Goıta, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

2002 (2)

P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, “Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends,” Int. J. Remote Sens. 23(13), 2563–2594 (2002).
[Crossref]

Z. Su, “The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes,” Hydrol. Earth Syst. Sci. Discuss. 6(1), 85–100 (2002).
[Crossref]

2001 (4)

F. N. Kogan, “Operational space technology for global vegetation assessment,” Bull. Am. Meteorol. Soc. 82(9), 1949–1964 (2001).
[Crossref]

Z. Qin, A. Karnieli, and P. Berliner, “A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region,” Int. J. Remote Sens. 22(18), 3719–3746 (2001).
[Crossref]

M. Owe and A. Van De Griend, “On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions,” Int. J. Remote Sens. 22(17), 3521–3532 (2001).
[Crossref]

F. Aires, C. Prigent, W. Rossow, and M. Rothstein, “A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations,” J. Geophys. Res., D, Atmospheres 106(D14), 14887–14907 (2001).
[Crossref]

1999 (1)

E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
[Crossref]

1998 (3)

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
[Crossref]

F. Weng and N. C. Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res., D, Atmospheres 103(D8), 8839–8848 (1998).
[Crossref]

A. Basist, N. C. Grody, T. C. Peterson, and C. N. Williams, “Using the Special Sensor Microwave/Imager to monitor land surface temperatures, wetness, and snow cover,” J. Appl. Meteorol. 37(9), 888–911 (1998).
[Crossref]

1996 (1)

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34(4), 892–905 (1996).
[Crossref]

1994 (1)

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

1990 (3)

F. Becker and Z.-L. Li, “Temperature-independent spectral indices in thermal infrared bands,” Remote Sens. Environ. 32(1), 17–33 (1990).
[Crossref]

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Remote Sens. 11(3), 369–393 (1990).
[Crossref]

M. J. McFarland, R. L. Miller, and C. M. Neale, “Land surface temperature derived from the SSM/I passive microwave brightness temperatures,” IEEE Trans. Geosci. Remote Sens. 28(5), 839–845 (1990).
[Crossref]

Aires, F.

F. Aires, C. Prigent, W. Rossow, and M. Rothstein, “A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations,” J. Geophys. Res., D, Atmospheres 106(D14), 14887–14907 (2001).
[Crossref]

André, C.

C. André, C. Ottlé, A. Royer, and F. Maignan, “Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data,” Remote Sens. Environ. 162, 1–10 (2015).
[Crossref]

Basist, A.

A. Basist, N. C. Grody, T. C. Peterson, and C. N. Williams, “Using the Special Sensor Microwave/Imager to monitor land surface temperatures, wetness, and snow cover,” J. Appl. Meteorol. 37(9), 888–911 (1998).
[Crossref]

Becker, F.

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Remote Sens. 11(3), 369–393 (1990).
[Crossref]

F. Becker and Z.-L. Li, “Temperature-independent spectral indices in thermal infrared bands,” Remote Sens. Environ. 32(1), 17–33 (1990).
[Crossref]

Berliner, P.

Z. Qin, A. Karnieli, and P. Berliner, “A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region,” Int. J. Remote Sens. 22(18), 3719–3746 (2001).
[Crossref]

Caselles, V.

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS Land Surface Temperature and emissivity separation algorithm with ground measurements over a rice paddy,” IEEE Trans. Geosci. Remote Sens. 54(5), 3061–3069 (2016).
[Crossref]

Chen, S.

S. Chen, X. Chen, W. Chen, Y. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
[Crossref] [PubMed]

Chen, W.

S. Chen, X. Chen, W. Chen, Y. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Chen, X.

S. Chen, X. Chen, W. Chen, Y. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Cihlar, J.

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

Coll, C.

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS Land Surface Temperature and emissivity separation algorithm with ground measurements over a rice paddy,” IEEE Trans. Geosci. Remote Sens. 54(5), 3061–3069 (2016).
[Crossref]

Cothern, J. S.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
[Crossref]

Dai, F.

J. Zhou, F. Dai, X. Zhang, S. Zhao, and M. Li, “Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass,” Int. J. Appl. Earth Obs. Geoinf. 34, 35–50 (2015).
[Crossref]

Dash, P.

P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, “Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends,” Int. J. Remote Sens. 23(13), 2563–2594 (2002).
[Crossref]

De Jeu, R.

T. Holmes, R. De Jeu, M. Owe, and A. Dolman, “Land surface temperature from Ka band (37 GHz) passive microwave observations,” J. Geophys. Res., D, Atmospheres 114, D04113 (2009).
[Crossref]

Dickinson, R. E.

H. Gao, R. Fu, R. E. Dickinson, and R. I. Negron Juare, “A practical method for retrieving land surface temperature from AMSR-E over the amazon forest,” IEEE Trans. Geosci. Remote Sens. 46(1), 193–199 (2008).
[Crossref]

Dolman, A.

T. Holmes, R. De Jeu, M. Owe, and A. Dolman, “Land surface temperature from Ka band (37 GHz) passive microwave observations,” J. Geophys. Res., D, Atmospheres 114, D04113 (2009).
[Crossref]

Dozier, J.

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34(4), 892–905 (1996).
[Crossref]

Duan, S.-B.

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

Efthymiadis, D. A.

D. A. Efthymiadis and P. D. Jones, “Assessment of maximum possible urbanization influences on land temperature data by comparison of land and marine data around coasts,” Atmosphere 1(1), 51–61 (2010).
[Crossref]

Fily, M.

M. Fily, A. Royer, K. Goıta, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

Fischer, H.

P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, “Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends,” Int. J. Remote Sens. 23(13), 2563–2594 (2002).
[Crossref]

Fu, R.

H. Gao, R. Fu, R. E. Dickinson, and R. I. Negron Juare, “A practical method for retrieving land surface temperature from AMSR-E over the amazon forest,” IEEE Trans. Geosci. Remote Sens. 46(1), 193–199 (2008).
[Crossref]

Fung, A. K.

F. T. Ulaby, R. K. Moore, and A. K. Fung, “Microwave remote sensing active and passive-volume III: from theory to applications,” (1986).

Gao, H.

H. Gao, R. Fu, R. E. Dickinson, and R. I. Negron Juare, “A practical method for retrieving land surface temperature from AMSR-E over the amazon forest,” IEEE Trans. Geosci. Remote Sens. 46(1), 193–199 (2008).
[Crossref]

García-Santos, V.

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS Land Surface Temperature and emissivity separation algorithm with ground measurements over a rice paddy,” IEEE Trans. Geosci. Remote Sens. 54(5), 3061–3069 (2016).
[Crossref]

Gillespie, A.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
[Crossref]

Goita, K.

M. Fily, A. Royer, K. Goıta, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

Göttsche, F.-M.

P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, “Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends,” Int. J. Remote Sens. 23(13), 2563–2594 (2002).
[Crossref]

Grody, N. C.

A. Basist, N. C. Grody, T. C. Peterson, and C. N. Williams, “Using the Special Sensor Microwave/Imager to monitor land surface temperatures, wetness, and snow cover,” J. Appl. Meteorol. 37(9), 888–911 (1998).
[Crossref]

F. Weng and N. C. Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res., D, Atmospheres 103(D8), 8839–8848 (1998).
[Crossref]

Hansen, J.

J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48(4), RG4004 (2010).
[Crossref]

Holmes, T.

T. Holmes, R. De Jeu, M. Owe, and A. Dolman, “Land surface temperature from Ka band (37 GHz) passive microwave observations,” J. Geophys. Res., D, Atmospheres 114, D04113 (2009).
[Crossref]

Hook, S.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
[Crossref]

Imada, Y.

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

Ishii, M.

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

Jimenez-Muñoz, J. C.

J. C. Jimenez-Muñoz and J. A. Sobrino, “A generalized single‐channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res., D Atmospheres 108, 4688 (2003).
[Crossref]

Jones, P. D.

D. A. Efthymiadis and P. D. Jones, “Assessment of maximum possible urbanization influences on land temperature data by comparison of land and marine data around coasts,” Atmosphere 1(1), 51–61 (2010).
[Crossref]

Justice, C.

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

Kahle, A. B.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
[Crossref]

Karnieli, A.

Z. Qin, A. Karnieli, and P. Berliner, “A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region,” Int. J. Remote Sens. 22(18), 3719–3746 (2001).
[Crossref]

Kimoto, M.

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

Kogan, F. N.

F. N. Kogan, “Operational space technology for global vegetation assessment,” Bull. Am. Meteorol. Soc. 82(9), 1949–1964 (2001).
[Crossref]

Leng, P.

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

F.-C. Zhou, X. Song, P. Leng, and Z.-L. Li, “An Effective Emission Depth Model for Passive Microwave Remote Sensing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(4), 1752–1760 (2016).
[Crossref]

Li, C.-R.

Li, D.

S. Chen, X. Chen, W. Chen, Y. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Li, L.

X. Zhang and L. Li, “A method to estimate land surface temperature from Meteosat Second Generation data using multi-temporal data,” Opt. Express 21(26), 31907–31918 (2013).
[Crossref] [PubMed]

E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
[Crossref]

Li, M.

J. Zhou, F. Dai, X. Zhang, S. Zhao, and M. Li, “Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass,” Int. J. Appl. Earth Obs. Geoinf. 34, 35–50 (2015).
[Crossref]

Li, Z. L.

Li, Z.-L.

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

F.-C. Zhou, X. Song, P. Leng, and Z.-L. Li, “An Effective Emission Depth Model for Passive Microwave Remote Sensing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(4), 1752–1760 (2016).
[Crossref]

Z.-L. Liu, H. Wu, B.-H. Tang, S. Qiu, and Z.-L. Li, “Atmospheric corrections of passive microwave data for estimating land surface temperature,” Opt. Express 21(13), 15654–15663 (2013).
[Crossref] [PubMed]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

F. Becker and Z.-L. Li, “Temperature-independent spectral indices in thermal infrared bands,” Remote Sens. Environ. 32(1), 17–33 (1990).
[Crossref]

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Remote Sens. 11(3), 369–393 (1990).
[Crossref]

Liu, Y.-K.

Liu, Z.-L.

Lo, K.

J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48(4), RG4004 (2010).
[Crossref]

Ma, L.-L.

Ma, Y.

M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
[Crossref]

Maeda, S.

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

Maignan, F.

C. André, C. Ottlé, A. Royer, and F. Maignan, “Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data,” Remote Sens. Environ. 162, 1–10 (2015).
[Crossref]

Malingreau, J.-P.

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

Matsunaga, T.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
[Crossref]

McFarland, M. J.

M. J. McFarland, R. L. Miller, and C. M. Neale, “Land surface temperature derived from the SSM/I passive microwave brightness temperatures,” IEEE Trans. Geosci. Remote Sens. 28(5), 839–845 (1990).
[Crossref]

Miller, R. L.

M. J. McFarland, R. L. Miller, and C. M. Neale, “Land surface temperature derived from the SSM/I passive microwave brightness temperatures,” IEEE Trans. Geosci. Remote Sens. 28(5), 839–845 (1990).
[Crossref]

Mizuta, R.

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

Moore, R. K.

F. T. Ulaby, R. K. Moore, and A. K. Fung, “Microwave remote sensing active and passive-volume III: from theory to applications,” (1986).

Neale, C. M.

M. J. McFarland, R. L. Miller, and C. M. Neale, “Land surface temperature derived from the SSM/I passive microwave brightness temperatures,” IEEE Trans. Geosci. Remote Sens. 28(5), 839–845 (1990).
[Crossref]

Negron Juare, R. I.

H. Gao, R. Fu, R. E. Dickinson, and R. I. Negron Juare, “A practical method for retrieving land surface temperature from AMSR-E over the amazon forest,” IEEE Trans. Geosci. Remote Sens. 46(1), 193–199 (2008).
[Crossref]

Niclòs, R.

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS Land Surface Temperature and emissivity separation algorithm with ground measurements over a rice paddy,” IEEE Trans. Geosci. Remote Sens. 54(5), 3061–3069 (2016).
[Crossref]

Njoku, E. G.

E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
[Crossref]

Ofwono, M.

M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
[Crossref]

Olesen, F.-S.

P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, “Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends,” Int. J. Remote Sens. 23(13), 2563–2594 (2002).
[Crossref]

Ottlé, C.

C. André, C. Ottlé, A. Royer, and F. Maignan, “Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data,” Remote Sens. Environ. 162, 1–10 (2015).
[Crossref]

OuYang, X.

Owe, M.

T. Holmes, R. De Jeu, M. Owe, and A. Dolman, “Land surface temperature from Ka band (37 GHz) passive microwave observations,” J. Geophys. Res., D, Atmospheres 114, D04113 (2009).
[Crossref]

M. Owe and A. Van De Griend, “On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions,” Int. J. Remote Sens. 22(17), 3521–3532 (2001).
[Crossref]

Peterson, T. C.

A. Basist, N. C. Grody, T. C. Peterson, and C. N. Williams, “Using the Special Sensor Microwave/Imager to monitor land surface temperatures, wetness, and snow cover,” J. Appl. Meteorol. 37(9), 888–911 (1998).
[Crossref]

Poirier, S.

A. Royer and S. Poirier, “Surface temperature spatial and temporal variations in North America from homogenized satellite SMMR‐SSM/I microwave measurements and reanalysis for 1979–2008,” J. Geophys. Res., D, Atmospheres 115, D08110 (2010).
[Crossref]

Prigent, C.

M. Fily, A. Royer, K. Goıta, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

F. Aires, C. Prigent, W. Rossow, and M. Rothstein, “A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations,” J. Geophys. Res., D, Atmospheres 106(D14), 14887–14907 (2001).
[Crossref]

Qian, Y.-G.

Qin, Z.

Z. Qin, A. Karnieli, and P. Berliner, “A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region,” Int. J. Remote Sens. 22(18), 3719–3746 (2001).
[Crossref]

Qiu, S.

Ren, H.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Rokugawa, S.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
[Crossref]

Rossow, W.

F. Aires, C. Prigent, W. Rossow, and M. Rothstein, “A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations,” J. Geophys. Res., D, Atmospheres 106(D14), 14887–14907 (2001).
[Crossref]

Rothstein, M.

F. Aires, C. Prigent, W. Rossow, and M. Rothstein, “A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations,” J. Geophys. Res., D, Atmospheres 106(D14), 14887–14907 (2001).
[Crossref]

Royer, A.

C. André, C. Ottlé, A. Royer, and F. Maignan, “Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data,” Remote Sens. Environ. 162, 1–10 (2015).
[Crossref]

A. Royer and S. Poirier, “Surface temperature spatial and temporal variations in North America from homogenized satellite SMMR‐SSM/I microwave measurements and reanalysis for 1979–2008,” J. Geophys. Res., D, Atmospheres 115, D08110 (2010).
[Crossref]

M. Fily, A. Royer, K. Goıta, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

Ruedy, R.

J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48(4), RG4004 (2010).
[Crossref]

Ruttenberg, S.

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

Sadowski, F.

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

Salama, M. S.

M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
[Crossref]

Sato, M.

J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48(4), RG4004 (2010).
[Crossref]

Shiogama, H.

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

Skole, D.

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

Sobrino, J. A.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

J. C. Jimenez-Muñoz and J. A. Sobrino, “A generalized single‐channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res., D Atmospheres 108, 4688 (2003).
[Crossref]

Song, X.

F.-C. Zhou, X. Song, P. Leng, and Z.-L. Li, “An Effective Emission Depth Model for Passive Microwave Remote Sensing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(4), 1752–1760 (2016).
[Crossref]

Su, H.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
[Crossref] [PubMed]

Su, Y.

S. Chen, X. Chen, W. Chen, Y. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Su, Z.

M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
[Crossref]

Z. Su, “The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes,” Hydrol. Earth Syst. Sci. Discuss. 6(1), 85–100 (2002).
[Crossref]

Sun, X.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
[Crossref] [PubMed]

Tang, B.-H.

Tang, L.-L.

Teillet, P.

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

Tian, J.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
[Crossref] [PubMed]

Townshend, J.

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

Trigo, I. F.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Ulaby, F. T.

F. T. Ulaby, R. K. Moore, and A. K. Fung, “Microwave remote sensing active and passive-volume III: from theory to applications,” (1986).

Van De Griend, A.

M. Owe and A. Van De Griend, “On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions,” Int. J. Remote Sens. 22(17), 3521–3532 (2001).
[Crossref]

Van der Velde, R.

M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
[Crossref]

Wan, Z.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34(4), 892–905 (1996).
[Crossref]

Wang, N.

Watanabe, M.

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

Weng, F.

F. Weng and N. C. Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res., D, Atmospheres 103(D8), 8839–8848 (1998).
[Crossref]

Williams, C. N.

A. Basist, N. C. Grody, T. C. Peterson, and C. N. Williams, “Using the Special Sensor Microwave/Imager to monitor land surface temperatures, wetness, and snow cover,” J. Appl. Meteorol. 37(9), 888–911 (1998).
[Crossref]

Wu, H.

Xia, J.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
[Crossref] [PubMed]

Yan, G.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Zhang, R.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Zhou, F. Dai, X. Zhang, S. Zhao, and M. Li, “Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass,” Int. J. Appl. Earth Obs. Geoinf. 34, 35–50 (2015).
[Crossref]

X. Zhang and L. Li, “A method to estimate land surface temperature from Meteosat Second Generation data using multi-temporal data,” Opt. Express 21(26), 31907–31918 (2013).
[Crossref] [PubMed]

Zhao, S.

J. Zhou, F. Dai, X. Zhang, S. Zhao, and M. Li, “Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass,” Int. J. Appl. Earth Obs. Geoinf. 34, 35–50 (2015).
[Crossref]

Zhong, L.

M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
[Crossref]

Zhou, F.-C.

F.-C. Zhou, X. Song, P. Leng, and Z.-L. Li, “An Effective Emission Depth Model for Passive Microwave Remote Sensing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(4), 1752–1760 (2016).
[Crossref]

Zhou, J.

J. Zhou, F. Dai, X. Zhang, S. Zhao, and M. Li, “Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass,” Int. J. Appl. Earth Obs. Geoinf. 34, 35–50 (2015).
[Crossref]

Atmosphere (2)

Y. Imada, S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, “Recent Enhanced Seasonal Temperature Contrast in Japan from Large Ensemble High-Resolution Climate Simulations,” Atmosphere 8(3), 57 (2017).
[Crossref]

D. A. Efthymiadis and P. D. Jones, “Assessment of maximum possible urbanization influences on land temperature data by comparison of land and marine data around coasts,” Atmosphere 1(1), 51–61 (2010).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

F. N. Kogan, “Operational space technology for global vegetation assessment,” Bull. Am. Meteorol. Soc. 82(9), 1949–1964 (2001).
[Crossref]

Clim. Change (1)

M. S. Salama, R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, “Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008,” Clim. Change 114(3-4), 769–781 (2012).
[Crossref]

Hydrol. Earth Syst. Sci. Discuss. (1)

Z. Su, “The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes,” Hydrol. Earth Syst. Sci. Discuss. 6(1), 85–100 (2002).
[Crossref]

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (1)

F.-C. Zhou, X. Song, P. Leng, and Z.-L. Li, “An Effective Emission Depth Model for Passive Microwave Remote Sensing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(4), 1752–1760 (2016).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (6)

E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
[Crossref]

H. Gao, R. Fu, R. E. Dickinson, and R. I. Negron Juare, “A practical method for retrieving land surface temperature from AMSR-E over the amazon forest,” IEEE Trans. Geosci. Remote Sens. 46(1), 193–199 (2008).
[Crossref]

M. J. McFarland, R. L. Miller, and C. M. Neale, “Land surface temperature derived from the SSM/I passive microwave brightness temperatures,” IEEE Trans. Geosci. Remote Sens. 28(5), 839–845 (1990).
[Crossref]

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34(4), 892–905 (1996).
[Crossref]

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998).
[Crossref]

C. Coll, V. García-Santos, R. Niclòs, and V. Caselles, “Test of the MODIS Land Surface Temperature and emissivity separation algorithm with ground measurements over a rice paddy,” IEEE Trans. Geosci. Remote Sens. 54(5), 3061–3069 (2016).
[Crossref]

Int. J. Appl. Earth Obs. Geoinf. (2)

J. Zhou, F. Dai, X. Zhang, S. Zhao, and M. Li, “Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass,” Int. J. Appl. Earth Obs. Geoinf. 34, 35–50 (2015).
[Crossref]

S. Chen, X. Chen, W. Chen, Y. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Int. J. Remote Sens. (4)

M. Owe and A. Van De Griend, “On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions,” Int. J. Remote Sens. 22(17), 3521–3532 (2001).
[Crossref]

Z. Qin, A. Karnieli, and P. Berliner, “A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region,” Int. J. Remote Sens. 22(18), 3719–3746 (2001).
[Crossref]

P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, “Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends,” Int. J. Remote Sens. 23(13), 2563–2594 (2002).
[Crossref]

J. Townshend, C. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, “The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme,” Int. J. Remote Sens. 15(17), 3417–3441 (1994).
[Crossref]

J. Appl. Meteorol. (1)

A. Basist, N. C. Grody, T. C. Peterson, and C. N. Williams, “Using the Special Sensor Microwave/Imager to monitor land surface temperatures, wetness, and snow cover,” J. Appl. Meteorol. 37(9), 888–911 (1998).
[Crossref]

J. Geophys. Res., D Atmospheres (1)

J. C. Jimenez-Muñoz and J. A. Sobrino, “A generalized single‐channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res., D Atmospheres 108, 4688 (2003).
[Crossref]

J. Geophys. Res., D, Atmospheres (4)

F. Weng and N. C. Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res., D, Atmospheres 103(D8), 8839–8848 (1998).
[Crossref]

T. Holmes, R. De Jeu, M. Owe, and A. Dolman, “Land surface temperature from Ka band (37 GHz) passive microwave observations,” J. Geophys. Res., D, Atmospheres 114, D04113 (2009).
[Crossref]

A. Royer and S. Poirier, “Surface temperature spatial and temporal variations in North America from homogenized satellite SMMR‐SSM/I microwave measurements and reanalysis for 1979–2008,” J. Geophys. Res., D, Atmospheres 115, D08110 (2010).
[Crossref]

F. Aires, C. Prigent, W. Rossow, and M. Rothstein, “A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations,” J. Geophys. Res., D, Atmospheres 106(D14), 14887–14907 (2001).
[Crossref]

Opt. Express (4)

Remote Sens. (1)

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Remote Sens. 11(3), 369–393 (1990).
[Crossref]

Remote Sens. Environ. (5)

M. Fily, A. Royer, K. Goıta, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

C. André, C. Ottlé, A. Royer, and F. Maignan, “Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data,” Remote Sens. Environ. 162, 1–10 (2015).
[Crossref]

F. Becker and Z.-L. Li, “Temperature-independent spectral indices in thermal infrared bands,” Remote Sens. Environ. 32(1), 17–33 (1990).
[Crossref]

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Rev. Geophys. (1)

J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48(4), RG4004 (2010).
[Crossref]

Sensors (Basel) (1)

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel) 8(10), 6165–6187 (2008).
[Crossref] [PubMed]

Other (9)

L. M. Zurk, D. Davis, E. G. Njoku, L. Tsang, and J.-N. Hwang, “Inversion of parameters for semiarid regions by a neural network,” NASA Tech. Rep. 19930063847 (1992).
[Crossref]

C. Gao, X. Jiang, Y. Qian, S. Qiu, L. Ma, and Z.-l. Li, “A neural network based method for land surface temperature retrieval from AMSR-E passive microwave data,” in Geoscience and Remote Sensing Symposium (IGARSS),2013IEEE International, (IEEE, 2013), 469–472.
[Crossref]

Z. Liu, B. Tang, and Z. Li, “Calculation of land surface temperature based on AMSR-E data,” Science & Technology Review, 24–27 (2009).

J. Gomes, “Late-quaternary landscape dynamics in the Iberian Peninsula and Balearic Islands,” (Dissertation, Universidade do Porto, Portugal, 2007).

“AMSR-E/Aqua Daily Gridded Brightness Temperatures”, retrieved http://nsidc.org/data/docs/daac/nsidc0301_amsre_gridded_tb.gd.html .

Z. Wan, “MYD11B1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 6km SIN Grid V006. NASA EOSDIS Land Processes DAAC.” (2015), retrieved https://doi.org/10.5067/MODIS/MYD11B1.006 .

K. Didan, MYD13A3 MODIS/Aqua Vegetation Indices Monthly L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. ” (2015), retrieved https://doi.org/10.5067/MODIS/MYD13A3.006 .

F. T. Ulaby, R. K. Moore, and A. K. Fung, “Microwave remote sensing active and passive-volume III: from theory to applications,” (1986).

K. Mao, “The study of algorithm for retrieving land surface temperature and soil moisture from thermal and microwave data,” MS thesis, Inst. Remote Sens. Appl., Chin. Acad. Sci., Univ. Chin. Acad. Sci., Beijing, China, Tech. Rep, 216 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Location of the study area. The land cover is derived from the MODIS land cover products (MCD12Q1) in 2008 with a 0.01° spatial resolution.

Fig. 2
Fig. 2

Relationship between the emissivity and MPDI in 2008 for different frequencies

Fig. 3
Fig. 3

LST retrieval using Method 1 for different polarizations. (a) H polarization; (b) V polarization

Fig. 4
Fig. 4

Scatterplot between the AMSR-E-derived LST and the MODIS LST in the year 2008. The colors in the scatterplot correspond to the density of points. (a) for Method 2; (b) for Method 3

Fig. 5
Fig. 5

RMSEs of LST retrieval using Eq. (10) and Eq. (11) during the year 2008 over the twelve months

Fig. 6
Fig. 6

LST retrieval using the coefficients of 2008 for the data sets of 2006, 2007, 2009, and 2010.

Tables (4)

Tables Icon

Table 1 The coefficients aM1,f,p, bM1,f,p and cM1,f,p, and the results for the emissivities derived from Eq. (7).

Tables Icon

Table 2 RMSEs for the LST retrieval from different channel combinations.

Tables Icon

Table 3 The coefficients in Eq. (10)

Tables Icon

Table 4 The coefficients in Eq. (11)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R= j=1 N ω j R j / j=1 N ω j with ω j = S j,p / S j
B f ( T f )= τ f (θ) ε f B f ( T s )+[1 τ f (θ)](1 ε f ) τ f (θ) B f ( T a )+[1 τ f (θ)] B f ( T a )
B f (T)= 2h f 3 c 2 ( e hf/ kT 1)
T f = τ f ε f T s +(1 τ f )(1 ε f ) τ f T a +(1 τ f ) T a
T s = T f ε f
MPD I f = T b Vf T b Hf T b Vf +T b Hf
ε f,p = a M1,f,p MPD I f 2 + b M1,f,p MPD I f + c M1,f,p
T s = T f a M1 MPD I f 2 + b M1 MPD I f + c M1
T s =a_ t M2 + i=1 6 b_ t i,M2 T b V f i + i=1 6 c_ t i,M2 T b H f i
T s = a M2 + b 1,M2 T b V06 + b 2,M2 T b V23 + b 3,M2 T b V36 + b 4,M2 T b V89 + c 1,M2 T b H06 + c 2,M2 T b H18 + c 3,M2 T b H23 + c 4,M2 T b H36 + c 5,M2 T b H89
T s = a M3 + b 1,M3 T b V06 + b 2,M3 T b V23 + b 3,M3 T b V36 + b 4,M3 T b V89 + c 1,M3 T b H06 + c 2,M3 T b H18 + c 3,M3 T b H23 + c 4,M3 T b H36 + c 5,M3 T b H89 + d M3 NDVI

Metrics