Abstract

We report the first laser emission from flash ignition of Zr/Al nanoparticles with the addition of strong oxidizer KClO4 using Nd: YAG as a laser medium. The mixture Zr/Al/Kp-45 (mass ratio = 33%Zr: 33%Al: 34%KClO4) has the highest brightness temperature Tb = 4615 K and the adiabatic flame temperature Tf = 4194 K with the duration of 20 ms. At 1064 nm we measured a maximum output energy of 702.5 mJ with the duration of nearly 10 ms by using only 100 mg mixture with an output coupler (transmission T = 10%). Further optimizing the concentration cavity and increasing the mixture content will yield much higher efficiency and output energy.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
    [Crossref] [PubMed]
  2. B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
    [Crossref] [PubMed]
  3. N. Wang, B. D. Yao, Y. F. Chan, and X. Y. Zhang, “Enhanced photothermal effect in Si nanowires,” Nano Lett. 3(4), 475–477 (2003).
    [Crossref]
  4. Y. Ohkura, J. M. Weisse, L. Cai, and X. Zheng, “Flash ignition of freestanding porous silicon films: effects of film thickness and porosity,” Nano Lett. 13(11), 5528–5533 (2013).
    [Crossref] [PubMed]
  5. J. Huang and R. B. Kaner, “Flash welding of conducting polymer nanofibres,” Nat. Mater. 3(11), 783–786 (2004).
    [Crossref] [PubMed]
  6. L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
    [Crossref] [PubMed]
  7. M. R. Manaa, A. R. Mitchell, R. G. Garza, P. F. Pagoria, and B. E. Watkins, “Flash ignition and initiation of explosives-nanotubes mixture,” J. Am. Chem. Soc. 127(40), 13786–13787 (2005).
    [Crossref] [PubMed]
  8. A. M. Berkowitz and M. A. Oehlschlaeger, “The photo-induced ignition of quiescent ethylene/air mixtures containing suspended carbon nanotubes,” Proc. Combust. Inst. 33(2), 3359–3366 (2011).
    [Crossref]
  9. S. H. Fischer and M. C. Grubelich, Proceedings of 24th International Pyrotechnics Seminar, Monterey, California, USA, CA, 27–31 (1998).
  10. T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, “Feasibility study and demonstration of an aluminum and ice solid propellant,” Int. J. Aerosp. Eng. 2012, 874076 (2012).
  11. L. L. Wang, Z. A. Munir, and Y. M. Maximov, “Thermite reactions: their utilization in the synthesis and processing of materials,” J. Mater. Sci. 28(14), 3693–3708 (1993).
    [Crossref]
  12. A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, “A quasicontinuous laser with pyrotechnical excitation,” J. Appl. Spectrosc. 6(2), 168–169 (1967).
    [Crossref]
  13. A. A. Kaminskiĭ, A. I. Bodretsova, A. G. Petrosyan, and A. A. Pavlyuk, “New quasi-cw pyrotechnically pumped crystal lasers,” Sov. J. Quantum Electron. 13(7), 975–976 (1983).
    [Crossref]
  14. M. A. Acharekar and R. LeBeau, “Miniature laser direct-detection radar,” Proc. SPIE 1633(94), 94–110 (1992).
    [Crossref]
  15. P. Pencikowski and P. Csik, “A long-range synthetic vision system combining a pyrotechnic-pumped laser and range-gated camera,” in IEEE Proceedings of 1996 Aerospace Applications Conference (1996), pp. 97–102.
  16. A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
    [Crossref]
  17. C. Rossi and D. Esteve, “Micropyrotechnics, a new technology for making energetic microsystems: review and prospective,” Sens. Actuators 120(2), 297–310 (2005).
    [Crossref]
  18. C. J. Morris, K. E. Laflin, W. A. Churaman, C. R. Becker, L. J. Currano, and D. H. Gracias, “Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators,” in Proc. 25th IEEE Int. Conf. Micro ElectroMech. Syst. (2012), pp. 1245−1248.
    [Crossref]
  19. C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(6), A1126–A1139 (2013).
    [Crossref] [PubMed]
  20. S. Wang, R. Shen, Y. Ye, and Y. Hu, “An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips,” Nanotechnology 23(43), 435701 (2012).
    [Crossref] [PubMed]
  21. D. W. Liang and R. Pereira, “Diode pumping of a solid-state laser rod by a two-dimensional CPC-elliptical cavity with intervening optics,” Opt. Commun. 275(1), 104–115 (2007).
    [Crossref]
  22. C. L. Yan, R. J. Liu, C. R. Zhang, and Y. B. Chao, “Synthesis and formation mechanism of ZrB2–Al2O3 composite powder starting from ZrO2, Al, and BN,” Adv. Powder Technol. 27(2), 711–716 (2016).
    [Crossref]
  23. X. L. Kang, Q. Zhang, J. S. Luo, and Y. J. Tang, “Selective emissions during combustion of KClO4/Zr pyrotechnics for laser pump application,” Combust. Sci. Technol. 183(12), 1401–1411 (2011).
    [Crossref]
  24. D. Liang and J. Almeida, “Solar-pumped TEM00 mode Nd: YAG laser,” Opt. Express 21(21), 25107–25112 (2013).
    [Crossref] [PubMed]
  25. S. Mizuno, H. Ito, K. Hasegawa, T. Suzuki, and Y. Ohishi, “Laser emission from a solar-pumped fiber,” Opt. Express 20(6), 5891–5895 (2012).
    [Crossref] [PubMed]
  26. K. Stepanov, L. Stanchits, and Y. Stankevich, “Modeling of explosion thermal radiation,” J. Eng. Phys. Thermophysics 84(1), 179–206 (2011).
    [Crossref]
  27. J. Winefordner, W. McGee, J. Mansfield, M. Parsons, and K. Zacha, “Intensity of thermal radiation of metal spectra in flame emission spectrometry,” Anal. Chim. Acta 36(66), 25–41 (1966).
    [Crossref]

2016 (1)

C. L. Yan, R. J. Liu, C. R. Zhang, and Y. B. Chao, “Synthesis and formation mechanism of ZrB2–Al2O3 composite powder starting from ZrO2, Al, and BN,” Adv. Powder Technol. 27(2), 711–716 (2016).
[Crossref]

2013 (3)

2012 (3)

S. Wang, R. Shen, Y. Ye, and Y. Hu, “An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips,” Nanotechnology 23(43), 435701 (2012).
[Crossref] [PubMed]

T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, “Feasibility study and demonstration of an aluminum and ice solid propellant,” Int. J. Aerosp. Eng. 2012, 874076 (2012).

S. Mizuno, H. Ito, K. Hasegawa, T. Suzuki, and Y. Ohishi, “Laser emission from a solar-pumped fiber,” Opt. Express 20(6), 5891–5895 (2012).
[Crossref] [PubMed]

2011 (3)

K. Stepanov, L. Stanchits, and Y. Stankevich, “Modeling of explosion thermal radiation,” J. Eng. Phys. Thermophysics 84(1), 179–206 (2011).
[Crossref]

X. L. Kang, Q. Zhang, J. S. Luo, and Y. J. Tang, “Selective emissions during combustion of KClO4/Zr pyrotechnics for laser pump application,” Combust. Sci. Technol. 183(12), 1401–1411 (2011).
[Crossref]

A. M. Berkowitz and M. A. Oehlschlaeger, “The photo-induced ignition of quiescent ethylene/air mixtures containing suspended carbon nanotubes,” Proc. Combust. Inst. 33(2), 3359–3366 (2011).
[Crossref]

2009 (1)

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

2007 (1)

D. W. Liang and R. Pereira, “Diode pumping of a solid-state laser rod by a two-dimensional CPC-elliptical cavity with intervening optics,” Opt. Commun. 275(1), 104–115 (2007).
[Crossref]

2006 (1)

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
[Crossref]

2005 (2)

C. Rossi and D. Esteve, “Micropyrotechnics, a new technology for making energetic microsystems: review and prospective,” Sens. Actuators 120(2), 297–310 (2005).
[Crossref]

M. R. Manaa, A. R. Mitchell, R. G. Garza, P. F. Pagoria, and B. E. Watkins, “Flash ignition and initiation of explosives-nanotubes mixture,” J. Am. Chem. Soc. 127(40), 13786–13787 (2005).
[Crossref] [PubMed]

2004 (1)

J. Huang and R. B. Kaner, “Flash welding of conducting polymer nanofibres,” Nat. Mater. 3(11), 783–786 (2004).
[Crossref] [PubMed]

2003 (1)

N. Wang, B. D. Yao, Y. F. Chan, and X. Y. Zhang, “Enhanced photothermal effect in Si nanowires,” Nano Lett. 3(4), 475–477 (2003).
[Crossref]

2002 (2)

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

1993 (1)

L. L. Wang, Z. A. Munir, and Y. M. Maximov, “Thermite reactions: their utilization in the synthesis and processing of materials,” J. Mater. Sci. 28(14), 3693–3708 (1993).
[Crossref]

1992 (1)

M. A. Acharekar and R. LeBeau, “Miniature laser direct-detection radar,” Proc. SPIE 1633(94), 94–110 (1992).
[Crossref]

1983 (1)

A. A. Kaminskiĭ, A. I. Bodretsova, A. G. Petrosyan, and A. A. Pavlyuk, “New quasi-cw pyrotechnically pumped crystal lasers,” Sov. J. Quantum Electron. 13(7), 975–976 (1983).
[Crossref]

1967 (1)

A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, “A quasicontinuous laser with pyrotechnical excitation,” J. Appl. Spectrosc. 6(2), 168–169 (1967).
[Crossref]

1966 (1)

J. Winefordner, W. McGee, J. Mansfield, M. Parsons, and K. Zacha, “Intensity of thermal radiation of metal spectra in flame emission spectrometry,” Anal. Chim. Acta 36(66), 25–41 (1966).
[Crossref]

Acharekar, M. A.

M. A. Acharekar and R. LeBeau, “Miniature laser direct-detection radar,” Proc. SPIE 1633(94), 94–110 (1992).
[Crossref]

Ajayan, P. M.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Almeida, J.

Bagayev, S. N.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
[Crossref]

Becker, C. R.

C. J. Morris, K. E. Laflin, W. A. Churaman, C. R. Becker, L. J. Currano, and D. H. Gracias, “Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators,” in Proc. 25th IEEE Int. Conf. Micro ElectroMech. Syst. (2012), pp. 1245−1248.
[Crossref]

Berkowitz, A. M.

A. M. Berkowitz and M. A. Oehlschlaeger, “The photo-induced ignition of quiescent ethylene/air mixtures containing suspended carbon nanotubes,” Proc. Combust. Inst. 33(2), 3359–3366 (2011).
[Crossref]

Bockrath, B.

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

Bodretsova, A. I.

A. A. Kaminskiĭ, A. I. Bodretsova, A. G. Petrosyan, and A. A. Pavlyuk, “New quasi-cw pyrotechnically pumped crystal lasers,” Sov. J. Quantum Electron. 13(7), 975–976 (1983).
[Crossref]

A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, “A quasicontinuous laser with pyrotechnical excitation,” J. Appl. Spectrosc. 6(2), 168–169 (1967).
[Crossref]

Cai, L.

Y. Ohkura, J. M. Weisse, L. Cai, and X. Zheng, “Flash ignition of freestanding porous silicon films: effects of film thickness and porosity,” Nano Lett. 13(11), 5528–5533 (2013).
[Crossref] [PubMed]

Chan, Y. F.

N. Wang, B. D. Yao, Y. F. Chan, and X. Y. Zhang, “Enhanced photothermal effect in Si nanowires,” Nano Lett. 3(4), 475–477 (2003).
[Crossref]

Chao, Y. B.

C. L. Yan, R. J. Liu, C. R. Zhang, and Y. B. Chao, “Synthesis and formation mechanism of ZrB2–Al2O3 composite powder starting from ZrO2, Al, and BN,” Adv. Powder Technol. 27(2), 711–716 (2016).
[Crossref]

Churaman, W. A.

C. J. Morris, K. E. Laflin, W. A. Churaman, C. R. Becker, L. J. Currano, and D. H. Gracias, “Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators,” in Proc. 25th IEEE Int. Conf. Micro ElectroMech. Syst. (2012), pp. 1245−1248.
[Crossref]

Cote, L. J.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Cruz-Silva, R.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Csik, P.

P. Pencikowski and P. Csik, “A long-range synthetic vision system combining a pyrotechnic-pumped laser and range-gated camera,” in IEEE Proceedings of 1996 Aerospace Applications Conference (1996), pp. 97–102.

Currano, L. J.

C. J. Morris, K. E. Laflin, W. A. Churaman, C. R. Becker, L. J. Currano, and D. H. Gracias, “Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators,” in Proc. 25th IEEE Int. Conf. Micro ElectroMech. Syst. (2012), pp. 1245−1248.
[Crossref]

de la Guardia, A.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Esteve, D.

C. Rossi and D. Esteve, “Micropyrotechnics, a new technology for making energetic microsystems: review and prospective,” Sens. Actuators 120(2), 297–310 (2005).
[Crossref]

Fischer, S. H.

S. H. Fischer and M. C. Grubelich, Proceedings of 24th International Pyrotechnics Seminar, Monterey, California, USA, CA, 27–31 (1998).

Garza, R. G.

M. R. Manaa, A. R. Mitchell, R. G. Garza, P. F. Pagoria, and B. E. Watkins, “Flash ignition and initiation of explosives-nanotubes mixture,” J. Am. Chem. Soc. 127(40), 13786–13787 (2005).
[Crossref] [PubMed]

Gracias, D. H.

C. J. Morris, K. E. Laflin, W. A. Churaman, C. R. Becker, L. J. Currano, and D. H. Gracias, “Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators,” in Proc. 25th IEEE Int. Conf. Micro ElectroMech. Syst. (2012), pp. 1245−1248.
[Crossref]

Grobert, N.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Grubelich, M. C.

S. H. Fischer and M. C. Grubelich, Proceedings of 24th International Pyrotechnics Seminar, Monterey, California, USA, CA, 27–31 (1998).

Hasegawa, K.

Howard, B.

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

Hu, Y.

S. Wang, R. Shen, Y. Ye, and Y. Hu, “An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips,” Nanotechnology 23(43), 435701 (2012).
[Crossref] [PubMed]

Huang, J.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

J. Huang and R. B. Kaner, “Flash welding of conducting polymer nanofibres,” Nat. Mater. 3(11), 783–786 (2004).
[Crossref] [PubMed]

Huc, V.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Ito, H.

Johnson, J. K.

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

Kaminskii, A. A.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
[Crossref]

A. A. Kaminskiĭ, A. I. Bodretsova, A. G. Petrosyan, and A. A. Pavlyuk, “New quasi-cw pyrotechnically pumped crystal lasers,” Sov. J. Quantum Electron. 13(7), 975–976 (1983).
[Crossref]

A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, “A quasicontinuous laser with pyrotechnical excitation,” J. Appl. Spectrosc. 6(2), 168–169 (1967).
[Crossref]

Kaner, R. B.

J. Huang and R. B. Kaner, “Flash welding of conducting polymer nanofibres,” Nat. Mater. 3(11), 783–786 (2004).
[Crossref] [PubMed]

Kang, X. L.

X. L. Kang, Q. Zhang, J. S. Luo, and Y. J. Tang, “Selective emissions during combustion of KClO4/Zr pyrotechnics for laser pump application,” Combust. Sci. Technol. 183(12), 1401–1411 (2011).
[Crossref]

Kroupa, G.

Laflin, K. E.

C. J. Morris, K. E. Laflin, W. A. Churaman, C. R. Becker, L. J. Currano, and D. H. Gracias, “Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators,” in Proc. 25th IEEE Int. Conf. Micro ElectroMech. Syst. (2012), pp. 1245−1248.
[Crossref]

LeBeau, R.

M. A. Acharekar and R. LeBeau, “Miniature laser direct-detection radar,” Proc. SPIE 1633(94), 94–110 (1992).
[Crossref]

Levikov, S. I.

A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, “A quasicontinuous laser with pyrotechnical excitation,” J. Appl. Spectrosc. 6(2), 168–169 (1967).
[Crossref]

Lezec, H.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Liang, D.

Liang, D. W.

D. W. Liang and R. Pereira, “Diode pumping of a solid-state laser rod by a two-dimensional CPC-elliptical cavity with intervening optics,” Opt. Commun. 275(1), 104–115 (2007).
[Crossref]

Liu, R. J.

C. L. Yan, R. J. Liu, C. R. Zhang, and Y. B. Chao, “Synthesis and formation mechanism of ZrB2–Al2O3 composite powder starting from ZrO2, Al, and BN,” Adv. Powder Technol. 27(2), 711–716 (2016).
[Crossref]

Luo, J. S.

X. L. Kang, Q. Zhang, J. S. Luo, and Y. J. Tang, “Selective emissions during combustion of KClO4/Zr pyrotechnics for laser pump application,” Combust. Sci. Technol. 183(12), 1401–1411 (2011).
[Crossref]

Manaa, M. R.

M. R. Manaa, A. R. Mitchell, R. G. Garza, P. F. Pagoria, and B. E. Watkins, “Flash ignition and initiation of explosives-nanotubes mixture,” J. Am. Chem. Soc. 127(40), 13786–13787 (2005).
[Crossref] [PubMed]

Manfletti, C.

Mansfield, J.

J. Winefordner, W. McGee, J. Mansfield, M. Parsons, and K. Zacha, “Intensity of thermal radiation of metal spectra in flame emission spectrometry,” Anal. Chim. Acta 36(66), 25–41 (1966).
[Crossref]

Matranga, C.

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

Maximov, Y. M.

L. L. Wang, Z. A. Munir, and Y. M. Maximov, “Thermite reactions: their utilization in the synthesis and processing of materials,” J. Mater. Sci. 28(14), 3693–3708 (1993).
[Crossref]

McGee, W.

J. Winefordner, W. McGee, J. Mansfield, M. Parsons, and K. Zacha, “Intensity of thermal radiation of metal spectra in flame emission spectrometry,” Anal. Chim. Acta 36(66), 25–41 (1966).
[Crossref]

Mitchell, A. R.

M. R. Manaa, A. R. Mitchell, R. G. Garza, P. F. Pagoria, and B. E. Watkins, “Flash ignition and initiation of explosives-nanotubes mixture,” J. Am. Chem. Soc. 127(40), 13786–13787 (2005).
[Crossref] [PubMed]

Mizuno, S.

Morris, C. J.

C. J. Morris, K. E. Laflin, W. A. Churaman, C. R. Becker, L. J. Currano, and D. H. Gracias, “Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators,” in Proc. 25th IEEE Int. Conf. Micro ElectroMech. Syst. (2012), pp. 1245−1248.
[Crossref]

Munir, Z. A.

L. L. Wang, Z. A. Munir, and Y. M. Maximov, “Thermite reactions: their utilization in the synthesis and processing of materials,” J. Mater. Sci. 28(14), 3693–3708 (1993).
[Crossref]

Oehlschlaeger, M. A.

A. M. Berkowitz and M. A. Oehlschlaeger, “The photo-induced ignition of quiescent ethylene/air mixtures containing suspended carbon nanotubes,” Proc. Combust. Inst. 33(2), 3359–3366 (2011).
[Crossref]

Ohishi, Y.

Ohkura, Y.

Y. Ohkura, J. M. Weisse, L. Cai, and X. Zheng, “Flash ignition of freestanding porous silicon films: effects of film thickness and porosity,” Nano Lett. 13(11), 5528–5533 (2013).
[Crossref] [PubMed]

Pagoria, P. F.

M. R. Manaa, A. R. Mitchell, R. G. Garza, P. F. Pagoria, and B. E. Watkins, “Flash ignition and initiation of explosives-nanotubes mixture,” J. Am. Chem. Soc. 127(40), 13786–13787 (2005).
[Crossref] [PubMed]

Parsons, M.

J. Winefordner, W. McGee, J. Mansfield, M. Parsons, and K. Zacha, “Intensity of thermal radiation of metal spectra in flame emission spectrometry,” Anal. Chim. Acta 36(66), 25–41 (1966).
[Crossref]

Pavlyuk, A. A.

A. A. Kaminskiĭ, A. I. Bodretsova, A. G. Petrosyan, and A. A. Pavlyuk, “New quasi-cw pyrotechnically pumped crystal lasers,” Sov. J. Quantum Electron. 13(7), 975–976 (1983).
[Crossref]

Pencikowski, P.

P. Pencikowski and P. Csik, “A long-range synthetic vision system combining a pyrotechnic-pumped laser and range-gated camera,” in IEEE Proceedings of 1996 Aerospace Applications Conference (1996), pp. 97–102.

Pereira, R.

D. W. Liang and R. Pereira, “Diode pumping of a solid-state laser rod by a two-dimensional CPC-elliptical cavity with intervening optics,” Opt. Commun. 275(1), 104–115 (2007).
[Crossref]

Petrosyan, A. G.

A. A. Kaminskiĭ, A. I. Bodretsova, A. G. Petrosyan, and A. A. Pavlyuk, “New quasi-cw pyrotechnically pumped crystal lasers,” Sov. J. Quantum Electron. 13(7), 975–976 (1983).
[Crossref]

Pfeil, M. A.

T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, “Feasibility study and demonstration of an aluminum and ice solid propellant,” Int. J. Aerosp. Eng. 2012, 874076 (2012).

Pourpoint, T. L.

T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, “Feasibility study and demonstration of an aluminum and ice solid propellant,” Int. J. Aerosp. Eng. 2012, 874076 (2012).

Ramanath, G.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Rossi, C.

C. Rossi and D. Esteve, “Micropyrotechnics, a new technology for making energetic microsystems: review and prospective,” Sens. Actuators 120(2), 297–310 (2005).
[Crossref]

Shen, R.

S. Wang, R. Shen, Y. Ye, and Y. Hu, “An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips,” Nanotechnology 23(43), 435701 (2012).
[Crossref] [PubMed]

Shi, W.

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

Sholl, D. S.

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

Son, S. F.

T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, “Feasibility study and demonstration of an aluminum and ice solid propellant,” Int. J. Aerosp. Eng. 2012, 874076 (2012).

Sorescu, D.

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

Stanchits, L.

K. Stepanov, L. Stanchits, and Y. Stankevich, “Modeling of explosion thermal radiation,” J. Eng. Phys. Thermophysics 84(1), 179–206 (2011).
[Crossref]

Stankevich, Y.

K. Stepanov, L. Stanchits, and Y. Stankevich, “Modeling of explosion thermal radiation,” J. Eng. Phys. Thermophysics 84(1), 179–206 (2011).
[Crossref]

Stepanov, K.

K. Stepanov, L. Stanchits, and Y. Stankevich, “Modeling of explosion thermal radiation,” J. Eng. Phys. Thermophysics 84(1), 179–206 (2011).
[Crossref]

Suzuki, T.

Takaichi, K.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
[Crossref]

Tang, Y. J.

X. L. Kang, Q. Zhang, J. S. Luo, and Y. J. Tang, “Selective emissions during combustion of KClO4/Zr pyrotechnics for laser pump application,” Combust. Sci. Technol. 183(12), 1401–1411 (2011).
[Crossref]

Terrones, M.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Tsohas, J.

T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, “Feasibility study and demonstration of an aluminum and ice solid propellant,” Int. J. Aerosp. Eng. 2012, 874076 (2012).

Ueda, K.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
[Crossref]

Wang, L. L.

L. L. Wang, Z. A. Munir, and Y. M. Maximov, “Thermite reactions: their utilization in the synthesis and processing of materials,” J. Mater. Sci. 28(14), 3693–3708 (1993).
[Crossref]

Wang, N.

N. Wang, B. D. Yao, Y. F. Chan, and X. Y. Zhang, “Enhanced photothermal effect in Si nanowires,” Nano Lett. 3(4), 475–477 (2003).
[Crossref]

Wang, S.

S. Wang, R. Shen, Y. Ye, and Y. Hu, “An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips,” Nanotechnology 23(43), 435701 (2012).
[Crossref] [PubMed]

Watkins, B. E.

M. R. Manaa, A. R. Mitchell, R. G. Garza, P. F. Pagoria, and B. E. Watkins, “Flash ignition and initiation of explosives-nanotubes mixture,” J. Am. Chem. Soc. 127(40), 13786–13787 (2005).
[Crossref] [PubMed]

Wei, B. Q.

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

Weisse, J. M.

Y. Ohkura, J. M. Weisse, L. Cai, and X. Zheng, “Flash ignition of freestanding porous silicon films: effects of film thickness and porosity,” Nano Lett. 13(11), 5528–5533 (2013).
[Crossref] [PubMed]

Winefordner, J.

J. Winefordner, W. McGee, J. Mansfield, M. Parsons, and K. Zacha, “Intensity of thermal radiation of metal spectra in flame emission spectrometry,” Anal. Chim. Acta 36(66), 25–41 (1966).
[Crossref]

Wood, T. D.

T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, “Feasibility study and demonstration of an aluminum and ice solid propellant,” Int. J. Aerosp. Eng. 2012, 874076 (2012).

Yagi, H.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
[Crossref]

Yan, C. L.

C. L. Yan, R. J. Liu, C. R. Zhang, and Y. B. Chao, “Synthesis and formation mechanism of ZrB2–Al2O3 composite powder starting from ZrO2, Al, and BN,” Adv. Powder Technol. 27(2), 711–716 (2016).
[Crossref]

Yanagitani, T.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
[Crossref]

Yao, B. D.

N. Wang, B. D. Yao, Y. F. Chan, and X. Y. Zhang, “Enhanced photothermal effect in Si nanowires,” Nano Lett. 3(4), 475–477 (2003).
[Crossref]

Ye, Y.

S. Wang, R. Shen, Y. Ye, and Y. Hu, “An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips,” Nanotechnology 23(43), 435701 (2012).
[Crossref] [PubMed]

Zacha, K.

J. Winefordner, W. McGee, J. Mansfield, M. Parsons, and K. Zacha, “Intensity of thermal radiation of metal spectra in flame emission spectrometry,” Anal. Chim. Acta 36(66), 25–41 (1966).
[Crossref]

Zhang, C. R.

C. L. Yan, R. J. Liu, C. R. Zhang, and Y. B. Chao, “Synthesis and formation mechanism of ZrB2–Al2O3 composite powder starting from ZrO2, Al, and BN,” Adv. Powder Technol. 27(2), 711–716 (2016).
[Crossref]

Zhang, Q.

X. L. Kang, Q. Zhang, J. S. Luo, and Y. J. Tang, “Selective emissions during combustion of KClO4/Zr pyrotechnics for laser pump application,” Combust. Sci. Technol. 183(12), 1401–1411 (2011).
[Crossref]

Zhang, X. Y.

N. Wang, B. D. Yao, Y. F. Chan, and X. Y. Zhang, “Enhanced photothermal effect in Si nanowires,” Nano Lett. 3(4), 475–477 (2003).
[Crossref]

Zheng, X.

Y. Ohkura, J. M. Weisse, L. Cai, and X. Zheng, “Flash ignition of freestanding porous silicon films: effects of film thickness and porosity,” Nano Lett. 13(11), 5528–5533 (2013).
[Crossref] [PubMed]

Adv. Powder Technol. (1)

C. L. Yan, R. J. Liu, C. R. Zhang, and Y. B. Chao, “Synthesis and formation mechanism of ZrB2–Al2O3 composite powder starting from ZrO2, Al, and BN,” Adv. Powder Technol. 27(2), 711–716 (2016).
[Crossref]

Anal. Chim. Acta (1)

J. Winefordner, W. McGee, J. Mansfield, M. Parsons, and K. Zacha, “Intensity of thermal radiation of metal spectra in flame emission spectrometry,” Anal. Chim. Acta 36(66), 25–41 (1966).
[Crossref]

Combust. Sci. Technol. (1)

X. L. Kang, Q. Zhang, J. S. Luo, and Y. J. Tang, “Selective emissions during combustion of KClO4/Zr pyrotechnics for laser pump application,” Combust. Sci. Technol. 183(12), 1401–1411 (2011).
[Crossref]

Int. J. Aerosp. Eng. (1)

T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, “Feasibility study and demonstration of an aluminum and ice solid propellant,” Int. J. Aerosp. Eng. 2012, 874076 (2012).

J. Am. Chem. Soc. (2)

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

M. R. Manaa, A. R. Mitchell, R. G. Garza, P. F. Pagoria, and B. E. Watkins, “Flash ignition and initiation of explosives-nanotubes mixture,” J. Am. Chem. Soc. 127(40), 13786–13787 (2005).
[Crossref] [PubMed]

J. Appl. Spectrosc. (1)

A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, “A quasicontinuous laser with pyrotechnical excitation,” J. Appl. Spectrosc. 6(2), 168–169 (1967).
[Crossref]

J. Eng. Phys. Thermophysics (1)

K. Stepanov, L. Stanchits, and Y. Stankevich, “Modeling of explosion thermal radiation,” J. Eng. Phys. Thermophysics 84(1), 179–206 (2011).
[Crossref]

J. Mater. Sci. (1)

L. L. Wang, Z. A. Munir, and Y. M. Maximov, “Thermite reactions: their utilization in the synthesis and processing of materials,” J. Mater. Sci. 28(14), 3693–3708 (1993).
[Crossref]

Laser Phys. Lett. (1)

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, “5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser,” Laser Phys. Lett. 3(3), 124–128 (2006).
[Crossref]

Nano Lett. (2)

N. Wang, B. D. Yao, Y. F. Chan, and X. Y. Zhang, “Enhanced photothermal effect in Si nanowires,” Nano Lett. 3(4), 475–477 (2003).
[Crossref]

Y. Ohkura, J. M. Weisse, L. Cai, and X. Zheng, “Flash ignition of freestanding porous silicon films: effects of film thickness and porosity,” Nano Lett. 13(11), 5528–5533 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

S. Wang, R. Shen, Y. Ye, and Y. Hu, “An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips,” Nanotechnology 23(43), 435701 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Huang and R. B. Kaner, “Flash welding of conducting polymer nanofibres,” Nat. Mater. 3(11), 783–786 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

D. W. Liang and R. Pereira, “Diode pumping of a solid-state laser rod by a two-dimensional CPC-elliptical cavity with intervening optics,” Opt. Commun. 275(1), 104–115 (2007).
[Crossref]

Opt. Express (3)

Proc. Combust. Inst. (1)

A. M. Berkowitz and M. A. Oehlschlaeger, “The photo-induced ignition of quiescent ethylene/air mixtures containing suspended carbon nanotubes,” Proc. Combust. Inst. 33(2), 3359–3366 (2011).
[Crossref]

Proc. SPIE (1)

M. A. Acharekar and R. LeBeau, “Miniature laser direct-detection radar,” Proc. SPIE 1633(94), 94–110 (1992).
[Crossref]

Science (2)

P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, and T. W. Ebbesen, “Nanotubes in a flash--ignition and reconstruction,” Science 296(5568), 705 (2002).
[Crossref] [PubMed]

B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, and D. Sorescu, “Igniting nanotubes with a flash,” Science 297(5579), 192–193 (2002).
[Crossref] [PubMed]

Sens. Actuators (1)

C. Rossi and D. Esteve, “Micropyrotechnics, a new technology for making energetic microsystems: review and prospective,” Sens. Actuators 120(2), 297–310 (2005).
[Crossref]

Sov. J. Quantum Electron. (1)

A. A. Kaminskiĭ, A. I. Bodretsova, A. G. Petrosyan, and A. A. Pavlyuk, “New quasi-cw pyrotechnically pumped crystal lasers,” Sov. J. Quantum Electron. 13(7), 975–976 (1983).
[Crossref]

Other (3)

C. J. Morris, K. E. Laflin, W. A. Churaman, C. R. Becker, L. J. Currano, and D. H. Gracias, “Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators,” in Proc. 25th IEEE Int. Conf. Micro ElectroMech. Syst. (2012), pp. 1245−1248.
[Crossref]

P. Pencikowski and P. Csik, “A long-range synthetic vision system combining a pyrotechnic-pumped laser and range-gated camera,” in IEEE Proceedings of 1996 Aerospace Applications Conference (1996), pp. 97–102.

S. H. Fischer and M. C. Grubelich, Proceedings of 24th International Pyrotechnics Seminar, Monterey, California, USA, CA, 27–31 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic configuration of the Nd: YAG laser pumped by flash ignition of Zr/Al Nps.

Fig. 2
Fig. 2

Comparison of Zr/Al-30 NPs and Zr/Al/Kp-45 thermite mixture before and after flash ignition. (a-c) Optical and SEM images of Zr/Al NPs before and after flash ignition. (d–f) Optical and SEM images of Zr/Al-Kp thermite mixture before and after the exposure. (g) EDX images of Zr/Al-Kp thermite mixture after the exposure.

Fig. 3
Fig. 3

Photographs of the burning process of a thermite mixture of (a) Zr/Al-30 NPs and (b) Zr/Al/Kp-45 ignited by a flash.

Fig. 4
Fig. 4

(a) The time-integrated emission spectra and (b) irradiance time of combusting Zr/Al with different amounts of Kp.

Fig. 5
Fig. 5

The brightness temperature Tb and adiabatic flame temperature Tf versus Kp mass ratio.

Fig. 6
Fig. 6

(a) Laser output energy versus the input pump energy; the inset shows the beam intensity distribution at a pump energy of 15 J; (b) the duration of the pulse laser.

Tables (1)

Tables Icon

Table 1 Zr/Al nanoparticles with various amount of Kp

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

3 KClO 4  + 8 Al4 Al 2 O 3  + 3 KCl
KClO 4  + 2 Zr2 ZrO 2  + KCl
q eq = 0 q weq dω = 0 2πh c 2 ω 3 exp(hcω/kT1) dω=σ T 4
I= h ν 0 N m A t L g m 4πI O 7 g n exp( h ν 0 kT )