Abstract

We propose to use the wavelet transform and Kalman filter methods for processing noise in δ13CO2 measurement using laser absorption spectroscopy at 2.008 µm and they have been shown to be useful tool for reducing the intrinsic noise of the optical system. Through the performance comparison and analysis of these two denoising techniques for the intrinsic noise reduction of optical system, it can be found that the Kalman filter is a more suitable approach for the extraction of gas isotope measurement signal from a contaminated signal.

© 2017 Optical Society of America

Full Article  |  PDF Article

Retraction

This article has been retracted. Please see:
Ming-sheng Niu, Pei-gao Han, Lian-ke Song, Dian-zhong Hao, Jing-hu Zhang, and Lili Ma, "Comparison and application of wavelet transform and Kalman filtering for denoising in δ13CO2 measurement by tunable diode laser absorption spectroscopy at 2.008 µm: retraction," Opt. Express 27, A860-A860 (2019)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-12-A860

OSA Recommended Articles
Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 μm

Tao Wu, Weidong Chen, Erik Kerstel, Eric Fertein, Xiaoming Gao, Johannes Koeth, Karl Rößner, and Daniela Brückner
Opt. Lett. 35(5) 634-636 (2010)

First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser spectrometry

A. Castrillo, G. Casa, M. van Burgel, D. Tedesco, and L. Gianfrani
Opt. Express 12(26) 6515-6523 (2004)

Kalman filtering of tunable diode laser spectrometer absorbance measurements

Haris Riris, Clinton B. Carlisle, and Russell E. Warren
Appl. Opt. 33(24) 5506-5508 (1994)

References

  • View by:
  • |
  • |
  • |

  1. L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
    [Crossref]
  2. E. Flores, J. Viallon, P. Moussay, D. W. T. Griffith, and R. I. Wielgosz, “Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air,” Anal. Chem. 89(6), 3648–3655 (2017).
    [Crossref] [PubMed]
  3. D. E. Murnick and B. J. Peer, “Laser-based analysis of carbon isotope ratios,” Science 263(5149), 945–947 (1994).
    [Crossref] [PubMed]
  4. K. Yu. Osipov, V. A. Kapitanov, Yu. N. Ponomarev, and A. I. Karapuzikov, “Design and modeling of a photoacoustic gas analyzer with a thermal source for carbon isotope ratio analysis,” Atmos. Oceanic Opt. 28(5), 481–486 (2015).
    [Crossref]
  5. E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
    [Crossref] [PubMed]
  6. J. Landsberg, D. Romanini, and E. Kerstel, “Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses,” Opt. Lett. 39(7), 1795–1798 (2014).
    [Crossref] [PubMed]
  7. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 µm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
    [Crossref]
  8. E. R. Th. Kerstel and H. A. J. Meijer, in Isotopes in the Water Cycle: Past, Present and Future of a Developing Science, P. K. Aggarwal, J. Gat, and K. Froehlich, eds. (Kluwer, 2005), Chap. 9, pp. 109–124.
  9. E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92(3), 439–449 (2008).
    [Crossref]
  10. J.-S. Li, B.-L. Yu, W.-X. Zhao, and W.-D. Chen, “A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy,” Appl. Spectrosc. Rev. 49(8), 666–691 (2014).
    [Crossref]
  11. T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
    [Crossref] [PubMed]
  12. B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, and D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997).
    [Crossref]
  13. B. Zhang, L.-X. Sun, H.-B. Yu, Y. Xin, and Z.-B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).
    [Crossref]
  14. I. Mappe-Fogaing, L. Joly, G. Durry, N. Dumelié, T. Decarpenterie, J. Cousin, B. Parvitte, and V. Zéninari, “Wavelet denoising for infrared laser spectroscopy and gas detection,” Appl. Spectrosc. 66(6), 700–710 (2012).
    [Crossref] [PubMed]
  15. M.-S. Niu and G.-S. Wang, “The research of δ13CO2 by use of wavelet denoising at 2.008 µm basisd on tunable diode laser absorption spectroscopy,” Wuli Xuebao 66(2), 024202 (2017).
  16. H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
    [Crossref]
  17. J.-S. Li, U. Parchatka, and H. Fischer, “Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements,” Appl. Phys. B 108(4), 951–963 (2012).
    [Crossref]
  18. C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
    [Crossref]
  19. P. M. Ramos and I. Ruisánchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
    [Crossref]
  20. M. Erdélyi, D. Richter, and F. K. Tittel, “13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 μm,” Appl. Phys. B 75(2-3), 289–295 (2002).
    [Crossref] [PubMed]
  21. C. I. Salis, A. E. M. Paschalis, A. Bizopoulos, A. T. Tzallas, P. A. Angelidis, and D. G. Tsalikakis, “Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter,” in IEEE International Conference on Bioinformatics & Bioengineering (2013), pp. 1–4.
  22. F. Ehrentreich, “Wavelet transform applications in analytical chemistry,” Anal. Bioanal. Chem. 372(1), 115–121 (2002).
    [Crossref] [PubMed]
  23. X.-Q. Lu, H.-D. Liu, J.-W. Kang, and J. Cheng, “Wavelet frequency spectrum and its application in analyzing an oscillating chemical system,” Anal. Chim. Acta 484(2), 201–210 (2003).
    [Crossref]
  24. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
    [Crossref]
  25. R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng. 82(1), 35–45 (1960).
    [Crossref]
  26. H. Riris, C. B. Carlisle, and R. E. Warren, “Kalman filtering of tunable diode laser spectrometer absorbance measurements,” Appl. Opt. 33(24), 5506–5508 (1994).
    [Crossref] [PubMed]
  27. D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
    [Crossref] [PubMed]

2017 (2)

E. Flores, J. Viallon, P. Moussay, D. W. T. Griffith, and R. I. Wielgosz, “Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air,” Anal. Chem. 89(6), 3648–3655 (2017).
[Crossref] [PubMed]

M.-S. Niu and G.-S. Wang, “The research of δ13CO2 by use of wavelet denoising at 2.008 µm basisd on tunable diode laser absorption spectroscopy,” Wuli Xuebao 66(2), 024202 (2017).

2016 (1)

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

2015 (1)

K. Yu. Osipov, V. A. Kapitanov, Yu. N. Ponomarev, and A. I. Karapuzikov, “Design and modeling of a photoacoustic gas analyzer with a thermal source for carbon isotope ratio analysis,” Atmos. Oceanic Opt. 28(5), 481–486 (2015).
[Crossref]

2014 (3)

J. Landsberg, D. Romanini, and E. Kerstel, “Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses,” Opt. Lett. 39(7), 1795–1798 (2014).
[Crossref] [PubMed]

J.-S. Li, B.-L. Yu, W.-X. Zhao, and W.-D. Chen, “A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy,” Appl. Spectrosc. Rev. 49(8), 666–691 (2014).
[Crossref]

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

2013 (1)

B. Zhang, L.-X. Sun, H.-B. Yu, Y. Xin, and Z.-B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).
[Crossref]

2012 (2)

I. Mappe-Fogaing, L. Joly, G. Durry, N. Dumelié, T. Decarpenterie, J. Cousin, B. Parvitte, and V. Zéninari, “Wavelet denoising for infrared laser spectroscopy and gas detection,” Appl. Spectrosc. 66(6), 700–710 (2012).
[Crossref] [PubMed]

J.-S. Li, U. Parchatka, and H. Fischer, “Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements,” Appl. Phys. B 108(4), 951–963 (2012).
[Crossref]

2010 (2)

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[Crossref] [PubMed]

2009 (1)

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 µm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

2008 (1)

E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92(3), 439–449 (2008).
[Crossref]

2006 (1)

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

2005 (1)

P. M. Ramos and I. Ruisánchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
[Crossref]

2003 (1)

X.-Q. Lu, H.-D. Liu, J.-W. Kang, and J. Cheng, “Wavelet frequency spectrum and its application in analyzing an oscillating chemical system,” Anal. Chim. Acta 484(2), 201–210 (2003).
[Crossref]

2002 (3)

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[Crossref] [PubMed]

M. Erdélyi, D. Richter, and F. K. Tittel, “13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 μm,” Appl. Phys. B 75(2-3), 289–295 (2002).
[Crossref] [PubMed]

F. Ehrentreich, “Wavelet transform applications in analytical chemistry,” Anal. Bioanal. Chem. 372(1), 115–121 (2002).
[Crossref] [PubMed]

1997 (1)

B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, and D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997).
[Crossref]

1994 (2)

1993 (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

1960 (1)

R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng. 82(1), 35–45 (1960).
[Crossref]

Alsberg, B. K.

B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, and D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997).
[Crossref]

Angelidis, P. A.

C. I. Salis, A. E. M. Paschalis, A. Bizopoulos, A. T. Tzallas, P. A. Angelidis, and D. G. Tsalikakis, “Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter,” in IEEE International Conference on Bioinformatics & Bioengineering (2013), pp. 1–4.

Bizopoulos, A.

C. I. Salis, A. E. M. Paschalis, A. Bizopoulos, A. T. Tzallas, P. A. Angelidis, and D. G. Tsalikakis, “Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter,” in IEEE International Conference on Bioinformatics & Bioengineering (2013), pp. 1–4.

Bowling, D. R.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Brückner, D.

Cao, T.

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

Carlisle, C. B.

Chen, W.

T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, K. Rössner, and D. Brückner, “Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm,” Opt. Lett. 35(5), 634–636 (2010).
[Crossref] [PubMed]

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[Crossref] [PubMed]

Chen, W.-D.

J.-S. Li, B.-L. Yu, W.-X. Zhao, and W.-D. Chen, “A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy,” Appl. Spectrosc. Rev. 49(8), 666–691 (2014).
[Crossref]

Cheng, J.

X.-Q. Lu, H.-D. Liu, J.-W. Kang, and J. Cheng, “Wavelet frequency spectrum and its application in analyzing an oscillating chemical system,” Anal. Chim. Acta 484(2), 201–210 (2003).
[Crossref]

Claps, R.

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[Crossref] [PubMed]

Cong, Z.-B.

B. Zhang, L.-X. Sun, H.-B. Yu, Y. Xin, and Z.-B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).
[Crossref]

Cousin, J.

Crosson, E. R.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Dang, J.-M.

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

Decarpenterie, T.

Dong, F.-Z.

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

Dumelié, N.

Durry, G.

Ehrentreich, F.

F. Ehrentreich, “Wavelet transform applications in analytical chemistry,” Anal. Bioanal. Chem. 372(1), 115–121 (2002).
[Crossref] [PubMed]

Erdélyi, M.

M. Erdélyi, D. Richter, and F. K. Tittel, “13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 μm,” Appl. Phys. B 75(2-3), 289–295 (2002).
[Crossref] [PubMed]

Fertein, E.

Fidric, B.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Fischer, H.

J.-S. Li, U. Parchatka, and H. Fischer, “Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements,” Appl. Phys. B 108(4), 951–963 (2012).
[Crossref]

Flores, E.

E. Flores, J. Viallon, P. Moussay, D. W. T. Griffith, and R. I. Wielgosz, “Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air,” Anal. Chem. 89(6), 3648–3655 (2017).
[Crossref] [PubMed]

Gao, X.

Gianfrani, L.

E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92(3), 439–449 (2008).
[Crossref]

Griffith, D. W. T.

E. Flores, J. Viallon, P. Moussay, D. W. T. Griffith, and R. I. Wielgosz, “Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air,” Anal. Chem. 89(6), 3648–3655 (2017).
[Crossref] [PubMed]

Hanson, R. K.

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 µm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

Harman, T. L.

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[Crossref] [PubMed]

Huang, J.

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

Jeffries, J. B.

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 µm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

Joly, L.

Kachanov, A. A.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Kalaskar, S.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Kalman, R. E.

R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng. 82(1), 35–45 (1960).
[Crossref]

Kang, J.-W.

X.-Q. Lu, H.-D. Liu, J.-W. Kang, and J. Cheng, “Wavelet frequency spectrum and its application in analyzing an oscillating chemical system,” Anal. Chim. Acta 484(2), 201–210 (2003).
[Crossref]

Kapitanov, V. A.

K. Yu. Osipov, V. A. Kapitanov, Yu. N. Ponomarev, and A. I. Karapuzikov, “Design and modeling of a photoacoustic gas analyzer with a thermal source for carbon isotope ratio analysis,” Atmos. Oceanic Opt. 28(5), 481–486 (2015).
[Crossref]

Karapuzikov, A. I.

K. Yu. Osipov, V. A. Kapitanov, Yu. N. Ponomarev, and A. I. Karapuzikov, “Design and modeling of a photoacoustic gas analyzer with a thermal source for carbon isotope ratio analysis,” Atmos. Oceanic Opt. 28(5), 481–486 (2015).
[Crossref]

Kell, D. B.

B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, and D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997).
[Crossref]

Kerstel, E.

Kharlamov, B.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Koeth, J.

Koulikov, S.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Landsberg, J.

Leleux, D. P.

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[Crossref] [PubMed]

Li, J.-S.

J.-S. Li, B.-L. Yu, W.-X. Zhao, and W.-D. Chen, “A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy,” Appl. Spectrosc. Rev. 49(8), 666–691 (2014).
[Crossref]

J.-S. Li, U. Parchatka, and H. Fischer, “Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements,” Appl. Phys. B 108(4), 951–963 (2012).
[Crossref]

Liu, H.-D.

X.-Q. Lu, H.-D. Liu, J.-W. Kang, and J. Cheng, “Wavelet frequency spectrum and its application in analyzing an oscillating chemical system,” Anal. Chim. Acta 484(2), 201–210 (2003).
[Crossref]

Liu, L. X.

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

Lu, X.-Q.

X.-Q. Lu, H.-D. Liu, J.-W. Kang, and J. Cheng, “Wavelet frequency spectrum and its application in analyzing an oscillating chemical system,” Anal. Chim. Acta 484(2), 201–210 (2003).
[Crossref]

Lv, M.

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

Mappe-Fogaing, I.

Moussay, P.

E. Flores, J. Viallon, P. Moussay, D. W. T. Griffith, and R. I. Wielgosz, “Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air,” Anal. Chem. 89(6), 3648–3655 (2017).
[Crossref] [PubMed]

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

Murnick, D. E.

D. E. Murnick and B. J. Peer, “Laser-based analysis of carbon isotope ratios,” Science 263(5149), 945–947 (1994).
[Crossref] [PubMed]

Niu, M.-S.

M.-S. Niu and G.-S. Wang, “The research of δ13CO2 by use of wavelet denoising at 2.008 µm basisd on tunable diode laser absorption spectroscopy,” Wuli Xuebao 66(2), 024202 (2017).

Osipov, K. Yu.

K. Yu. Osipov, V. A. Kapitanov, Yu. N. Ponomarev, and A. I. Karapuzikov, “Design and modeling of a photoacoustic gas analyzer with a thermal source for carbon isotope ratio analysis,” Atmos. Oceanic Opt. 28(5), 481–486 (2015).
[Crossref]

Paldus, B. A.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Pang, T.

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

Parchatka, U.

J.-S. Li, U. Parchatka, and H. Fischer, “Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements,” Appl. Phys. B 108(4), 951–963 (2012).
[Crossref]

Parvitte, B.

Paschalis, A. E. M.

C. I. Salis, A. E. M. Paschalis, A. Bizopoulos, A. T. Tzallas, P. A. Angelidis, and D. G. Tsalikakis, “Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter,” in IEEE International Conference on Bioinformatics & Bioengineering (2013), pp. 1–4.

Peer, B. J.

D. E. Murnick and B. J. Peer, “Laser-based analysis of carbon isotope ratios,” Science 263(5149), 945–947 (1994).
[Crossref] [PubMed]

Ponomarev, Yu. N.

K. Yu. Osipov, V. A. Kapitanov, Yu. N. Ponomarev, and A. I. Karapuzikov, “Design and modeling of a photoacoustic gas analyzer with a thermal source for carbon isotope ratio analysis,” Atmos. Oceanic Opt. 28(5), 481–486 (2015).
[Crossref]

Ramos, P. M.

P. M. Ramos and I. Ruisánchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
[Crossref]

Rella, C. W.

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Richman, B. A.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Richter, D.

M. Erdélyi, D. Richter, and F. K. Tittel, “13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 μm,” Appl. Phys. B 75(2-3), 289–295 (2002).
[Crossref] [PubMed]

Rieker, G. B.

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 µm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

Riris, H.

Romanini, D.

Rössner, K.

Rowland, J.

B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, and D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997).
[Crossref]

Ruisánchez, I.

P. M. Ramos and I. Ruisánchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
[Crossref]

Salis, C. I.

C. I. Salis, A. E. M. Paschalis, A. Bizopoulos, A. T. Tzallas, P. A. Angelidis, and D. G. Tsalikakis, “Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter,” in IEEE International Conference on Bioinformatics & Bioengineering (2013), pp. 1–4.

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

Sun, L.-X.

B. Zhang, L.-X. Sun, H.-B. Yu, Y. Xin, and Z.-B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).
[Crossref]

Tan, S.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Tittel, F. K.

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[Crossref] [PubMed]

M. Erdélyi, D. Richter, and F. K. Tittel, “13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 μm,” Appl. Phys. B 75(2-3), 289–295 (2002).
[Crossref] [PubMed]

Tsalikakis, D. G.

C. I. Salis, A. E. M. Paschalis, A. Bizopoulos, A. T. Tzallas, P. A. Angelidis, and D. G. Tsalikakis, “Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter,” in IEEE International Conference on Bioinformatics & Bioengineering (2013), pp. 1–4.

Tu, G.-J.

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

Tzallas, A. T.

C. I. Salis, A. E. M. Paschalis, A. Bizopoulos, A. T. Tzallas, P. A. Angelidis, and D. G. Tsalikakis, “Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter,” in IEEE International Conference on Bioinformatics & Bioengineering (2013), pp. 1–4.

van der Schoot, M. V.

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

Viallon, J.

E. Flores, J. Viallon, P. Moussay, D. W. T. Griffith, and R. I. Wielgosz, “Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air,” Anal. Chem. 89(6), 3648–3655 (2017).
[Crossref] [PubMed]

Wahl, E. H.

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

Wang, G.-S.

M.-S. Niu and G.-S. Wang, “The research of δ13CO2 by use of wavelet denoising at 2.008 µm basisd on tunable diode laser absorption spectroscopy,” Wuli Xuebao 66(2), 024202 (2017).

Wang, H. Y.

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

Wang, Y.

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

Wang, Y.-D.

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

Warren, R. E.

Werle, P.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

Wielgosz, R. I.

E. Flores, J. Viallon, P. Moussay, D. W. T. Griffith, and R. I. Wielgosz, “Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air,” Anal. Chem. 89(6), 3648–3655 (2017).
[Crossref] [PubMed]

Winson, M. K.

B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, and D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997).
[Crossref]

Woodward, A. M.

B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, and D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997).
[Crossref]

Wu, B.

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

Wu, T.

Xia, H.

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

Xia, L.-J.

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

Xin, Y.

B. Zhang, L.-X. Sun, H.-B. Yu, Y. Xin, and Z.-B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).
[Crossref]

Ye, W.

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

Yu, B.-L.

J.-S. Li, B.-L. Yu, W.-X. Zhao, and W.-D. Chen, “A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy,” Appl. Spectrosc. Rev. 49(8), 666–691 (2014).
[Crossref]

Yu, H.-B.

B. Zhang, L.-X. Sun, H.-B. Yu, Y. Xin, and Z.-B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).
[Crossref]

Zéninari, V.

Zhang, B.

B. Zhang, L.-X. Sun, H.-B. Yu, Y. Xin, and Z.-B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).
[Crossref]

Zhang, G.

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

Zhang, Z.-R.

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

Zhao, W.-X.

J.-S. Li, B.-L. Yu, W.-X. Zhao, and W.-D. Chen, “A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy,” Appl. Spectrosc. Rev. 49(8), 666–691 (2014).
[Crossref]

Zheng, C.-T.

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

Zhou, L.-X.

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

Anal. Bioanal. Chem. (1)

F. Ehrentreich, “Wavelet transform applications in analytical chemistry,” Anal. Bioanal. Chem. 372(1), 115–121 (2002).
[Crossref] [PubMed]

Anal. Chem. (1)

E. Flores, J. Viallon, P. Moussay, D. W. T. Griffith, and R. I. Wielgosz, “Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air,” Anal. Chem. 89(6), 3648–3655 (2017).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X.-Q. Lu, H.-D. Liu, J.-W. Kang, and J. Cheng, “Wavelet frequency spectrum and its application in analyzing an oscillating chemical system,” Anal. Chim. Acta 484(2), 201–210 (2003).
[Crossref]

Analyst (Lond.) (1)

B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, and D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (6)

D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74(1), 85–93 (2002).
[Crossref] [PubMed]

M. Erdélyi, D. Richter, and F. K. Tittel, “13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 μm,” Appl. Phys. B 75(2-3), 289–295 (2002).
[Crossref] [PubMed]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

J.-S. Li, U. Parchatka, and H. Fischer, “Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements,” Appl. Phys. B 108(4), 951–963 (2012).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 µm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92(3), 439–449 (2008).
[Crossref]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

J.-S. Li, B.-L. Yu, W.-X. Zhao, and W.-D. Chen, “A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy,” Appl. Spectrosc. Rev. 49(8), 666–691 (2014).
[Crossref]

Atmos. Oceanic Opt. (1)

K. Yu. Osipov, V. A. Kapitanov, Yu. N. Ponomarev, and A. I. Karapuzikov, “Design and modeling of a photoacoustic gas analyzer with a thermal source for carbon isotope ratio analysis,” Atmos. Oceanic Opt. 28(5), 481–486 (2015).
[Crossref]

Isotopes Environ. Health Stud. (1)

E. H. Wahl, B. Fidric, C. W. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. A. Kachanov, B. A. Richman, E. R. Crosson, B. A. Paldus, S. Kalaskar, and D. R. Bowling, “Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide,” Isotopes Environ. Health Stud. 42(1), 21–35 (2006).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (1)

B. Zhang, L.-X. Sun, H.-B. Yu, Y. Xin, and Z.-B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).
[Crossref]

J. Basic Eng. (1)

R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng. 82(1), 35–45 (1960).
[Crossref]

J. Raman Spectrosc. (1)

P. M. Ramos and I. Ruisánchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

H. Xia, F.-Z. Dong, Z.-R. Zhang, G.-J. Tu, T. Pang, B. Wu, and Y. Wang, “Signal analytical processing basisd on wavelet transform for tunable diode laser absorption spectroscopy,” Proc. SPIE 7853, 785311 (2010).
[Crossref]

Sci. China Earth Sci. (1)

L.-J. Xia, L.-X. Zhou, M. V. van der Schoot, C. W. Rella, L. X. Liu, G. Zhang, and H. Y. Wang, “Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements,” Sci. China Earth Sci. 59(6), 1299–1307 (2016).
[Crossref]

Science (1)

D. E. Murnick and B. J. Peer, “Laser-based analysis of carbon isotope ratios,” Science 263(5149), 945–947 (1994).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C.-T. Zheng, W. Ye, J. Huang, T. Cao, M. Lv, J.-M. Dang, and Y.-D. Wang, “Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique,” Sens. Actuators B Chem. 190(1), 249–258 (2014).
[Crossref]

Wuli Xuebao (1)

M.-S. Niu and G.-S. Wang, “The research of δ13CO2 by use of wavelet denoising at 2.008 µm basisd on tunable diode laser absorption spectroscopy,” Wuli Xuebao 66(2), 024202 (2017).

Other (2)

E. R. Th. Kerstel and H. A. J. Meijer, in Isotopes in the Water Cycle: Past, Present and Future of a Developing Science, P. K. Aggarwal, J. Gat, and K. Froehlich, eds. (Kluwer, 2005), Chap. 9, pp. 109–124.

C. I. Salis, A. E. M. Paschalis, A. Bizopoulos, A. T. Tzallas, P. A. Angelidis, and D. G. Tsalikakis, “Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter,” in IEEE International Conference on Bioinformatics & Bioengineering (2013), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Scheme of the experimental setup.
Fig. 2
Fig. 2 Comparison of the Original Signal and the resulted signal of the different wavelet basis function.
Fig. 3
Fig. 3 Comparison of different DL denoising results based on Haar wavelet basis: (a) the spectrum smoothness after denoising; (b) the spectrum change of 12CO2 and 13CO2 before and after denoising, the left spectrum is 12CO2 absorption spectrum in the range from 471—517 and the inset of the upper panel is enlarged signals in the range from 485—500, the right spectrum is 13CO2 absorption spectrum in the range from 1260—1311.
Fig. 4
Fig. 4 The comparison of the denoising results with different thresholds.
Fig. 5
Fig. 5 Estimation with the global threshold and the local threshold. The inset of the upper panel is the enlarged signals in the range from 865 to 872.
Fig. 6
Fig. 6 Upper panel, raw measurements of δ13CO2 with 1 s averaging time, the Allan variances in the lower panel show an optimal averaging time of about 90 s for the present laser system.
Fig. 7
Fig. 7 The δ13CO2 measurements showing a comparison between the optimal averaging solutions and the KF solutions.
Fig. 8
Fig. 8 The comparison of δ13CO2 measurement between the original results, WT results and KF results. The top panel is the original signal, the middle panel is the WT denoising signal and the bottom panel is the KF denoising signal.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ k+1 = δ k + ω k ρ k = δ k + v k

Metrics