Abstract

We report a systematic study of the temperature and excitation density behavior of an AlAs/AlGaAs, vertically emitting microcavity with embedded ternary Al0.20Ga0.80As/AlAs quantum wells in the strong coupling regime. Temperature-dependent photoluminescence measurements of the bare quantum wells indicate a crossover from the type-II indirect to the type-I direct transition. The resulting mixing of quantum well and barrier ground states in the conduction band leads to an estimated exciton binding energy systematically exceeding 25 meV. The formation of exciton-polaritons is evidenced in our quantum well microcavity via reflection measurements with Rabi splittings ranging from (13.93 ± 0.15) meV at low temperature (30 K) to (8.58 ± 0.40) meV at room temperature (300 K). Furthermore, the feasibility of polariton laser operation is demonstrated under non-resonant optical excitation conditions at 20 K and emission around 1.835 eV.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells

Pranai Vasudev, Jian-Hua Jiang, and Sajeev John
Opt. Express 24(13) 14010-14035 (2016)

Room temperature polariton light emitting diode with integrated tunnel junction

S. Brodbeck, J.-P. Jahn, A. Rahimi-Iman, J. Fischer, M. Amthor, S. Reitzenstein, M. Kamp, C. Schneider, and S. Höfling
Opt. Express 21(25) 31098-31104 (2013)

Exciton polaritons in quantum wells embedded in waveguides and microcavities

Stefan Jorda
J. Opt. Soc. Am. B 13(5) 1054-1060 (1996)

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
    [Crossref] [PubMed]
  2. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
    [Crossref] [PubMed]
  3. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
    [Crossref] [PubMed]
  4. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
    [Crossref] [PubMed]
  5. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
    [Crossref] [PubMed]
  6. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
    [Crossref] [PubMed]
  7. S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
    [Crossref] [PubMed]
  8. Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity,” Appl. Phys. Express 5(8), 082801 (2012).
    [Crossref]
  9. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
    [Crossref]
  10. S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94(7), 071109 (2009).
    [Crossref]
  11. C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250.000,” Appl. Phys. B 122(1), 19 (2016).
    [Crossref]
  12. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
    [Crossref] [PubMed]
  13. P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110(20), 206403 (2013).
    [Crossref] [PubMed]
  14. T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
    [Crossref] [PubMed]
  15. K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
    [Crossref]
  16. C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
    [Crossref] [PubMed]
  17. J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
    [Crossref]
  18. L. C. Andreani and A. Pasquarello, “Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 42(14), 8928–8938 (1990).
    [Crossref] [PubMed]
  19. J. B. Khurgin, “Excitonic radius in the cavity polariton in the regime of very strong coupling,” Solid State Commun. 117(5), 307–310 (2001).
    [Crossref]
  20. M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
    [Crossref]
  21. H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87(11), 115303 (2013).
    [Crossref]
  22. N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
    [Crossref]
  23. A. J. SpringThorpe, F. D. King, and A. Becke, “Te- and Ge-doping studies in Ga1−xAlxAs,” J. Electron. Mater. 4(1), 101–118 (1975).
    [Crossref]
  24. P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
    [Crossref] [PubMed]
  25. M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
    [Crossref]
  26. B. Deveaud, “Comment on “Room Temperature Electrically Injected Polariton Laser”,” Phys. Rev. Lett. 117(2), 029701 (2016).
    [Crossref] [PubMed]
  27. P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
    [Crossref] [PubMed]
  28. P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
    [Crossref]
  29. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
    [Crossref] [PubMed]
  30. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
    [Crossref] [PubMed]
  31. D. M. Shcherbakova and V. V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10(8), 751–754 (2013).
    [Crossref] [PubMed]
  32. J. Singh and K. K. Bajaj, “Role of interface roughness and alloy disorder in photoluminescence in quantum‐well structures,” J. Appl. Phys. 57(12), 5433–5437 (1985).
    [Crossref]
  33. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  34. R. Cingolani, L. Baldassarre, M. Ferrara, M. Lugarà, and K. Ploog, “Type-I-type-II transition in ultra-short-period GaAs/AlAs superlattices,” Phys. Rev. B Condens. Matter 40(9), 6101–6107 (1989).
    [Crossref] [PubMed]
  35. D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum‐well heterostructures grown by molecular‐beam epitaxy,” J. Appl. Phys. 64(3), 1371–1377 (1988).
    [Crossref]
  36. V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
    [Crossref]
  37. D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 51(23), 16785–16789 (1995).
    [Crossref] [PubMed]
  38. S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
    [Crossref]
  39. A. R. Pratt, T. Takamori, and T. Kamijoh, “Temperature dependence of the cavity-polariton mode splitting in a semiconductor microcavity,” Phys. Rev. B 58(15), 9656–9658 (1998).
    [Crossref]
  40. J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
    [Crossref]
  41. D. Bajoni, P. Senellart, A. Lemaître, and J. Bloch, “Photon lasing in GaAs microcavity: Similarities with a polariton condensate,” Phys. Rev. B 76(20), 201305 (2007).
  42. R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
    [Crossref]

2017 (1)

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

2016 (4)

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250.000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

B. Deveaud, “Comment on “Room Temperature Electrically Injected Polariton Laser”,” Phys. Rev. Lett. 117(2), 029701 (2016).
[Crossref] [PubMed]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
[Crossref] [PubMed]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

2015 (2)

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

2014 (2)

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

2013 (5)

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87(11), 115303 (2013).
[Crossref]

D. M. Shcherbakova and V. V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10(8), 751–754 (2013).
[Crossref] [PubMed]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110(20), 206403 (2013).
[Crossref] [PubMed]

2012 (4)

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity,” Appl. Phys. Express 5(8), 082801 (2012).
[Crossref]

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

2010 (1)

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

2009 (2)

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94(7), 071109 (2009).
[Crossref]

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
[Crossref]

2007 (3)

D. Bajoni, P. Senellart, A. Lemaître, and J. Bloch, “Photon lasing in GaAs microcavity: Similarities with a polariton condensate,” Phys. Rev. B 76(20), 201305 (2007).

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[Crossref] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

2006 (1)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

2003 (1)

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

2002 (1)

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref] [PubMed]

2001 (2)

J. B. Khurgin, “Excitonic radius in the cavity polariton in the regime of very strong coupling,” Solid State Commun. 117(5), 307–310 (2001).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1998 (1)

A. R. Pratt, T. Takamori, and T. Kamijoh, “Temperature dependence of the cavity-polariton mode splitting in a semiconductor microcavity,” Phys. Rev. B 58(15), 9656–9658 (1998).
[Crossref]

1996 (1)

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[Crossref] [PubMed]

1995 (2)

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 51(23), 16785–16789 (1995).
[Crossref] [PubMed]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

1990 (1)

L. C. Andreani and A. Pasquarello, “Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 42(14), 8928–8938 (1990).
[Crossref] [PubMed]

1989 (1)

R. Cingolani, L. Baldassarre, M. Ferrara, M. Lugarà, and K. Ploog, “Type-I-type-II transition in ultra-short-period GaAs/AlAs superlattices,” Phys. Rev. B Condens. Matter 40(9), 6101–6107 (1989).
[Crossref] [PubMed]

1988 (1)

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum‐well heterostructures grown by molecular‐beam epitaxy,” J. Appl. Phys. 64(3), 1371–1377 (1988).
[Crossref]

1985 (3)

J. Singh and K. K. Bajaj, “Role of interface roughness and alloy disorder in photoluminescence in quantum‐well structures,” J. Appl. Phys. 57(12), 5433–5437 (1985).
[Crossref]

S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

1984 (1)

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

1975 (1)

A. J. SpringThorpe, F. D. King, and A. Becke, “Te- and Ge-doping studies in Ga1−xAlxAs,” J. Electron. Mater. 4(1), 101–118 (1975).
[Crossref]

Abbarchi, M.

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

Adachi, S.

S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

Amo, A.

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

Amthor, M.

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

André, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Andreani, L. C.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]

L. C. Andreani and A. Pasquarello, “Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 42(14), 8928–8938 (1990).
[Crossref] [PubMed]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

Assmann, M.

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Bajaj, K. K.

J. Singh and K. K. Bajaj, “Role of interface roughness and alloy disorder in photoluminescence in quantum‐well structures,” J. Appl. Phys. 57(12), 5433–5437 (1985).
[Crossref]

Bajoni, D.

D. Bajoni, P. Senellart, A. Lemaître, and J. Bloch, “Photon lasing in GaAs microcavity: Similarities with a polariton condensate,” Phys. Rev. B 76(20), 201305 (2007).

Baldassarre, L.

R. Cingolani, L. Baldassarre, M. Ferrara, M. Lugarà, and K. Ploog, “Type-I-type-II transition in ultra-short-period GaAs/AlAs superlattices,” Phys. Rev. B Condens. Matter 40(9), 6101–6107 (1989).
[Crossref] [PubMed]

Balili, R.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[Crossref] [PubMed]

Baten, M. Z.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
[Crossref] [PubMed]

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

Baumberg, J. J.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Bayer, M.

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

Becke, A.

A. J. SpringThorpe, F. D. King, and A. Becke, “Te- and Ge-doping studies in Ga1−xAlxAs,” J. Electron. Mater. 4(1), 101–118 (1975).
[Crossref]

Betzold, S.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Bhattacharya, P.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
[Crossref] [PubMed]

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110(20), 206403 (2013).
[Crossref] [PubMed]

Bhowmick, S.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110(20), 206403 (2013).
[Crossref] [PubMed]

Bloch, J.

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

D. Bajoni, P. Senellart, A. Lemaître, and J. Bloch, “Photon lasing in GaAs microcavity: Similarities with a polariton condensate,” Phys. Rev. B 76(20), 201305 (2007).

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref] [PubMed]

Butté, R.

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
[Crossref]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Carlin, J.-F.

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
[Crossref]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Carusotto, I.

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

Chand, N.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

Chang, Y.-C.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

Cherotchenko, E.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Christmann, G.

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
[Crossref]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Christopoulos, S.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Cingolani, R.

R. Cingolani, L. Baldassarre, M. Ferrara, M. Lugarà, and K. Ploog, “Type-I-type-II transition in ultra-short-period GaAs/AlAs superlattices,” Phys. Rev. B Condens. Matter 40(9), 6101–6107 (1989).
[Crossref] [PubMed]

Clark, C.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Dall, R.

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

Dang, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Das, A.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
[Crossref] [PubMed]

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110(20), 206403 (2013).
[Crossref] [PubMed]

Del Pozo-Zamudio, O.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Deligeorgis, G.

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94(7), 071109 (2009).
[Crossref]

Deng, H.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref] [PubMed]

Deshpande, S.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
[Crossref] [PubMed]

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

Deveaud, B.

B. Deveaud, “Comment on “Room Temperature Electrically Injected Polariton Laser”,” Phys. Rev. Lett. 117(2), 029701 (2016).
[Crossref] [PubMed]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Dietrich, C. P.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Dufferwiel, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Eldridge, P. S.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
[Crossref]

Emmerling, M.

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

Fastenau, J. M.

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

Feltin, E.

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
[Crossref]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Ferrara, M.

R. Cingolani, L. Baldassarre, M. Ferrara, M. Lugarà, and K. Ploog, “Type-I-type-II transition in ultra-short-period GaAs/AlAs superlattices,” Phys. Rev. B Condens. Matter 40(9), 6101–6107 (1989).
[Crossref] [PubMed]

Fischer, J.

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Fischer, R.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

Forchel, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

Forrest, S. R.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

Fraser, M. D.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

Frost, T.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
[Crossref] [PubMed]

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

Galopin, E.

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

Gammon, D.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 51(23), 16785–16789 (1995).
[Crossref] [PubMed]

Gao, T.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
[Crossref]

Geßler, J.

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

Gold, P.

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250.000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Grandjean, N.

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
[Crossref]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Grundy, A. J. D.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[Crossref] [PubMed]

Hatzopoulos, Z.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
[Crossref]

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94(7), 071109 (2009).
[Crossref]

Hazari, A.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
[Crossref] [PubMed]

Henderson, T.

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

Heo, J.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110(20), 206403 (2013).
[Crossref] [PubMed]

Höfling, S.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250.000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

Iff, O.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Imamoglu, A.

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[Crossref] [PubMed]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

Jacqmin, T.

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Jiang, D. S.

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum‐well heterostructures grown by molecular‐beam epitaxy,” J. Appl. Phys. 64(3), 1371–1377 (1988).
[Crossref]

Jung, H.

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum‐well heterostructures grown by molecular‐beam epitaxy,” J. Appl. Phys. 64(3), 1371–1377 (1988).
[Crossref]

Kamijoh, T.

A. R. Pratt, T. Takamori, and T. Kamijoh, “Temperature dependence of the cavity-polariton mode splitting in a semiconductor microcavity,” Phys. Rev. B 58(15), 9656–9658 (1998).
[Crossref]

Kamp, M.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250.000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Katzer, D. S.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 51(23), 16785–16789 (1995).
[Crossref] [PubMed]

Kavokin, A. V.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Kéna-Cohen, S.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “Excitonic radius in the cavity polariton in the regime of very strong coupling,” Solid State Commun. 117(5), 307–310 (2001).
[Crossref]

Kim, N. Y.

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87(11), 115303 (2013).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

King, F. D.

A. J. SpringThorpe, F. D. King, and A. Becke, “Te- and Ge-doping studies in Ga1−xAlxAs,” J. Electron. Mater. 4(1), 101–118 (1975).
[Crossref]

Klaas, M.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Klem, J.

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

Klembt, S.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Kreilkamp, L. E.

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

Krizhanovskii, D. N.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Kulakovskii, V. D.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Kyono, C. S.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 51(23), 16785–16789 (1995).
[Crossref] [PubMed]

Lagoudakis, P. G.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Lai, Y.-Y.

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity,” Appl. Phys. Express 5(8), 082801 (2012).
[Crossref]

Lan, Y.-P.

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity,” Appl. Phys. Express 5(8), 082801 (2012).
[Crossref]

Langer, F.

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

Lemaître, A.

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

D. Bajoni, P. Senellart, A. Lemaître, and J. Bloch, “Photon lasing in GaAs microcavity: Similarities with a polariton condensate,” Phys. Rev. B 76(20), 201305 (2007).

Lermer, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Levrat, J.

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
[Crossref]

Li, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Litton, C. W.

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

Liu, A. W. K.

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

Löffler, A.

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

Lu, T.-C.

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity,” Appl. Phys. Express 5(8), 082801 (2012).
[Crossref]

Lubyshev, D.

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

Lugarà, M.

R. Cingolani, L. Baldassarre, M. Ferrara, M. Lugarà, and K. Ploog, “Type-I-type-II transition in ultra-short-period GaAs/AlAs superlattices,” Phys. Rev. B Condens. Matter 40(9), 6101–6107 (1989).
[Crossref] [PubMed]

Lundt, N.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Malpuech, G.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Masselink, W. T.

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Misiewicz, J.

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

Morkoc, H.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

Morkoç, H.

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

Musial, A.

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

Na, N.

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87(11), 115303 (2013).
[Crossref]

Nalitov, A.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Nalitov, A. V.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

Novoselov, K. S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Ostrovskaya, E. A.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

Pasquarello, A.

L. C. Andreani and A. Pasquarello, “Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 42(14), 8928–8938 (1990).
[Crossref] [PubMed]

Pau, S.

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[Crossref] [PubMed]

Pearah, P. J.

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

Pelekanos, N. T.

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94(7), 071109 (2009).
[Crossref]

Pfeiffer, L.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[Crossref] [PubMed]

Pieczarka, M.

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

Ploog, K.

R. Cingolani, L. Baldassarre, M. Ferrara, M. Lugarà, and K. Ploog, “Type-I-type-II transition in ultra-short-period GaAs/AlAs superlattices,” Phys. Rev. B Condens. Matter 40(9), 6101–6107 (1989).
[Crossref] [PubMed]

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum‐well heterostructures grown by molecular‐beam epitaxy,” J. Appl. Phys. 64(3), 1371–1377 (1988).
[Crossref]

Podemski, P.

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

Pratt, A. R.

A. R. Pratt, T. Takamori, and T. Kamijoh, “Temperature dependence of the cavity-polariton mode splitting in a semiconductor microcavity,” Phys. Rev. B 58(15), 9656–9658 (1998).
[Crossref]

Quattropani, A.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]

Rahimi-Iman, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

Ram, R. J.

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[Crossref] [PubMed]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Reinecke, T. L.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 51(23), 16785–16789 (1995).
[Crossref] [PubMed]

Reitzenstein, S.

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250.000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

Reynolds, D. C.

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Rudin, S.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 51(23), 16785–16789 (1995).
[Crossref] [PubMed]

Ryczko, K.

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

Sagnes, I.

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

Santori, C.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref] [PubMed]

Savenko, I. G.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]

Savvidis, P. G.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
[Crossref]

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94(7), 071109 (2009).
[Crossref]

Schade, A.

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

Schneider, C.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250.000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Schwarz, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Schwendimann, P.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]

Sek, G.

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

Senellart, P.

D. Bajoni, P. Senellart, A. Lemaître, and J. Bloch, “Photon lasing in GaAs microcavity: Similarities with a polariton condensate,” Phys. Rev. B 76(20), 201305 (2007).

Shcherbakova, D. M.

D. M. Shcherbakova and V. V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10(8), 751–754 (2013).
[Crossref] [PubMed]

Shelykh, I. A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Sich, M.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Singh, J.

J. Singh and K. K. Bajaj, “Role of interface roughness and alloy disorder in photoluminescence in quantum‐well structures,” J. Appl. Phys. 57(12), 5433–5437 (1985).
[Crossref]

Skolnick, M. S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Smith, J. M.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[Crossref] [PubMed]

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

Solnyshkov, D. D.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

SpringThorpe, A. J.

A. J. SpringThorpe, F. D. King, and A. Becke, “Te- and Ge-doping studies in Ga1−xAlxAs,” J. Electron. Mater. 4(1), 101–118 (1975).
[Crossref]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

Takamori, T.

A. R. Pratt, T. Takamori, and T. Kamijoh, “Temperature dependence of the cavity-polariton mode splitting in a semiconductor microcavity,” Phys. Rev. B 58(15), 9656–9658 (1998).
[Crossref]

Tartakovskii, A. I.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Tempel, J.-S.

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

Trichet, A. A. P.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Tsintzos, S. I.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
[Crossref]

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94(7), 071109 (2009).
[Crossref]

Tsotsis, P.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
[Crossref]

Veit, F.

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

Verkhusha, V. V.

D. M. Shcherbakova and V. V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10(8), 751–754 (2013).
[Crossref] [PubMed]

von Högersthal, G. B.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Weihs, G.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref] [PubMed]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

West, K.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[Crossref] [PubMed]

Winkler, K.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

Withers, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Wolf, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Worschech, L.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

Xiao, B.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110(20), 206403 (2013).
[Crossref] [PubMed]

Yamamoto, Y.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87(11), 115303 (2013).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref] [PubMed]

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87(11), 115303 (2013).
[Crossref]

Acta Phys. Pol. A (1)

M. Pieczarka, P. Podemski, A. Musial, K. Ryczko, G. Sęk, J. Misiewicz, F. Langer, S. Höfling, M. Kamp, and A. Forchel, “GaAs-Based Quantum Well Exciton-Polaritons beyond 1 µm,” Acta Phys. Pol. A 124(5), 817–820 (2013).
[Crossref]

Appl. Phys. B (1)

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250.000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Appl. Phys. Express (1)

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity,” Appl. Phys. Express 5(8), 082801 (2012).
[Crossref]

Appl. Phys. Lett. (2)

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94(7), 071109 (2009).
[Crossref]

M. Z. Baten, P. Bhattacharya, T. Frost, S. Deshpande, A. Das, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “GaAs-based high temperature electrically pumped polariton laser,” Appl. Phys. Lett. 104(23), 231119 (2014).
[Crossref]

J. Appl. Phys. (4)

J. Singh and K. K. Bajaj, “Role of interface roughness and alloy disorder in photoluminescence in quantum‐well structures,” J. Appl. Phys. 57(12), 5433–5437 (1985).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum‐well heterostructures grown by molecular‐beam epitaxy,” J. Appl. Phys. 64(3), 1371–1377 (1988).
[Crossref]

S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

J. Electron. Mater. (1)

A. J. SpringThorpe, F. D. King, and A. Becke, “Te- and Ge-doping studies in Ga1−xAlxAs,” J. Electron. Mater. 4(1), 101–118 (1975).
[Crossref]

Nat. Commun. (2)

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

D. M. Shcherbakova and V. V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10(8), 751–754 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

Nature (2)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref] [PubMed]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

New J. Phys. (3)

K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, “A polariton condensate in a photonic crystal potential landscape,” New J. Phys. 17(2), 023001 (2015).
[Crossref]

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14(2), 023060 (2012).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14(8), 083014 (2012).
[Crossref]

Phys. Rev. A (1)

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[Crossref] [PubMed]

Phys. Rev. B (6)

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87(11), 115303 (2013).
[Crossref]

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoĉ, “Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiments,” Phys. Rev. B 30(8), 4481–4492 (1984).
[Crossref]

A. R. Pratt, T. Takamori, and T. Kamijoh, “Temperature dependence of the cavity-polariton mode splitting in a semiconductor microcavity,” Phys. Rev. B 58(15), 9656–9658 (1998).
[Crossref]

J.-S. Tempel, F. Veit, M. Assmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, “Characterization of two-threshold behavior of the emission from a GaAs microcavity,” Phys. Rev. B 85(7), 075318 (2012).
[Crossref]

D. Bajoni, P. Senellart, A. Lemaître, and J. Bloch, “Photon lasing in GaAs microcavity: Similarities with a polariton condensate,” Phys. Rev. B 76(20), 201305 (2007).

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80(23), 233301 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (4)

L. C. Andreani and A. Pasquarello, “Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 42(14), 8928–8938 (1990).
[Crossref] [PubMed]

P. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, “Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy,” Phys. Rev. B Condens. Matter 32(6), 3857–3862 (1985).
[Crossref] [PubMed]

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 51(23), 16785–16789 (1995).
[Crossref] [PubMed]

R. Cingolani, L. Baldassarre, M. Ferrara, M. Lugarà, and K. Ploog, “Type-I-type-II transition in ultra-short-period GaAs/AlAs superlattices,” Phys. Rev. B Condens. Matter 40(9), 6101–6107 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

B. Deveaud, “Comment on “Room Temperature Electrically Injected Polariton Laser”,” Phys. Rev. Lett. 117(2), 029701 (2016).
[Crossref] [PubMed]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Comment on ‘Room Temperature Electrically Injected Polariton Laser’ Reply,” Phys. Rev. Lett. 117(2), 029702 (2016).
[Crossref] [PubMed]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref] [PubMed]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110(20), 206403 (2013).
[Crossref] [PubMed]

T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons,” Phys. Rev. Lett. 112(11), 116402 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Rep. Prog. Phys. 80(1), 016503 (2017).
[Crossref] [PubMed]

Science (2)

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[Crossref] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref] [PubMed]

Solid State Commun. (2)

J. B. Khurgin, “Excitonic radius in the cavity polariton in the regime of very strong coupling,” Solid State Commun. 117(5), 307–310 (2001).
[Crossref]

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic drawing of the layer structure of the investigated microcavity. (b) Scanning electron microscope image of the cavity region of the grown structure highlighting the three stacks of four Al0.20Ga0.80As quantum wells (red). (c) Low excitation power photoluminescence at 20 K of the 9 nm Al0.20Ga0.80As quantum well embedded in AlAs barriers.
Fig. 2
Fig. 2 (a) Calculated band diagram at low temperature (5 K) for the grown quantum wells. Shown are the Γ-band (solid black line), the X-band (solid red line) and the valence band (solid orange line). The arrows indicate the type-II indirect transition from the quantized X-valley state in the barrier (XZ) to the first heavy hole quantum well energy state (hh1) and the direct transition from the first Γ-valley state inside the quantum well to hh1. (b) Calculated energy difference between e1 and XZ as a function of temperature. Above ~70 K the quantum well system is direct. (c) Temperature-dependent photoluminescence of the bare exciton at low excitation power (~0.5 W∙cm−2), together with the calculated trend of the type-II indirect (green dotted line) and the type-I direct (red dashed line) transition. The calculated lines are shifted to fit the experimental values at low temperature. (d) Temperature-dependent intensity of the bare exciton photoluminescence, while keeping the excitation power constant at non-resonant excitation. The plateau-like deviation from the decreasing photoluminescence intensity with increasing temperature around 70 K indicates the crossover from the type-II indirect to the type-I direct transition, due to charge transfer between the valleys. Note that the direct transition was probes over the whole temperature range.
Fig. 3
Fig. 3 White light reflection measurements of the planar microcavity sample at different positions on the wafer at 30 K (a) and 300 K (b). The spectra are shifted vertically such that the photon-exciton detuning shifts from red (bottom) to blue (top). Arrows indicate the position of the lower (LP), middle (MP) and the upper (UP) polariton branches. Extracted energies of the different polariton branches at 30 K (c) and 300 K (d). Clear anti-crossings between the LP and the MP as well as the MP and the UP are visible at both temperatures. Dashed lines mark the energy positions of the uncoupled heavy hole (Ehh) and the light hole (Elh) excitons.
Fig. 4
Fig. 4 (a) Temperature-dependent linewidth of the heavy hole QW exciton together with the fitted exponential function according to Eq. (4) (dashed red line). (b) Temperature-dependent Rabi-splitting extracted from white-light reflection measurements. The dashed red line represents a fit to the temperature-dependent heavy hole Rabi splitting using Eq. (3) while the dotted grey line represents a fit using the standard coupled oscillator approach, Eq. (2).
Fig. 5
Fig. 5 (a) Momentum-resolved photoluminescence spectra at different excitation powers. The low power spectrum was fitted using the standard coupled oscillator model by coupling the cavity mode with the heavy hole exciton. White dashed lines indicate the lower (LP) and upper (UP) polariton branch, as well as the uncoupled exciton (X, red) and photon mode (C, green). (b) Power-dependent emission intensity and linewidth (FWHM), extracted from the momentum resolved spectra around zero k|| ~0. (c) Corresponding power-dependent emission energy. The vertical black line indicates the threshold, while the horizontal blue dashed line indicates the energy of the uncoupled cavity mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E B =( m* m 0 ) R y ε 2 ,
Ω= 4 V 2 1 4 ( γ C γ X ) 2 ,
Ω R =2 V 4 ( 1+ 2 γ X γ C ) 2 + 1 2 V 2 γ X 2 ( 1+ γ X γ C ) 2 V 2 γ X γ C γ X 2 4 .
γ X (T)= γ inh + γ AC T+ γ LO ( exp{ Ω LO k B T }1 ) 1 ,

Metrics