Abstract

We present a novel approach to improve self-referenced sensing based on multiple-resonance nanorod structures. The method employs the maximum likelihood estimation (MLE) alongside a linear response model (LM), relating the sensor response (shifts in resonance wavelengths) to the changes due to surface binding and bulk refractive index. We also provide a solution to avoid repetitive simulations, that have been previously needed to determine the adlayer thickness sensitivity when measuring biological samples of different refractive indices. The finite element method (FEM) was used to model the nanorod structure, and the nanoimprint lithography was employed to fabricate them. The standard deviation of the results based on the MLE method is lower than that associated with the LM results. The method can be applied to an extended number of resonances to achieve a higher accuracy and precision.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-referenced spectroscopy using plasmon waveguide resonance biosensor

Farshid Bahrami, Mathieu Maisonneuve, Michel Meunier, J. Stewart Aitchison, and Mo Mojahedi
Biomed. Opt. Express 5(8) 2481-2487 (2014)

Simple method for self-referenced and lable-free biosensing by using a capillary sensing element

Yun Liu, Shimeng Chen, Qiang Liu, Zigeng Liu, and Peng Wei
Opt. Express 25(10) 11750-11759 (2017)

Nanorod-mediated surface plasmon resonance sensor based on effective medium theory

Junxue Fu, Bosoon Park, and Yiping Zhao
Appl. Opt. 48(23) 4637-4649 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1/3), 38–45 (1998).
    [Crossref]
  2. P. Schuck and H. Zhao, “The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing,” Methods in Molecular Biology 627, 15 (2010).
    [Crossref] [PubMed]
  3. D. G. Drescher, N. A. Ramakrishnan, and M. J. Drescher, “Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Proteins in Inner-Ear Sensory Epithelia,” Methods in Molecular Biology 493, 323 (2009).
    [Crossref]
  4. S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
    [Crossref] [PubMed]
  5. J. Homola, H.B. Lu, and S.S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105 (1999).
    [Crossref]
  6. R. Slavik, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–939 (2006).
    [Crossref]
  7. J.T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- andshort- range surface plasmons,” Opt. Express,  15(26), 17661 (2007).
    [Crossref] [PubMed]
  8. N. Nehru, E. U. Donev, G. M. Huda, L. Yu, Y. Wei, and J. T. Hastings, “Differentiating surface and bulk interactions using localized surface plasmon resonances of gold nanorods,” Opt. Express 20, 6905 (2012).
    [Crossref] [PubMed]
  9. N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotech. 13(1), 55–61 (2014).
    [Crossref]
  10. F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “Self-referenced spectroscopy using plasmon waveguide resonance biosensor,” Biomed. Opt. Express 5, 2481 (2014).
    [Crossref] [PubMed]
  11. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, 1991).
  12. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films,” Langmuir 14(19), 5636 (1998).
    [Crossref]
  13. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
    [Crossref] [PubMed]
  14. P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6(12), 4370 (1972).
    [Crossref]
  15. CAD/Art Services, Inc, http://www.outputcity.com
  16. D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nature Protocols 5, 491 (2010).
    [Crossref] [PubMed]
  17. Thermo Fisher Scientific, T., EZ-Link HPDP-Biotin Instructions.
  18. ProteoChem, http://www.proteochem.com
  19. G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
    [Crossref]
  20. L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435 (2012).
    [Crossref] [PubMed]
  21. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
    [Crossref] [PubMed]
  22. D.R. Lide, 86th Handbook of Chemistry and Physics (CRC, 2006) Chap. 8.

2014 (2)

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotech. 13(1), 55–61 (2014).
[Crossref]

F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “Self-referenced spectroscopy using plasmon waveguide resonance biosensor,” Biomed. Opt. Express 5, 2481 (2014).
[Crossref] [PubMed]

2012 (2)

N. Nehru, E. U. Donev, G. M. Huda, L. Yu, Y. Wei, and J. T. Hastings, “Differentiating surface and bulk interactions using localized surface plasmon resonances of gold nanorods,” Opt. Express 20, 6905 (2012).
[Crossref] [PubMed]

L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435 (2012).
[Crossref] [PubMed]

2011 (1)

S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
[Crossref] [PubMed]

2010 (2)

P. Schuck and H. Zhao, “The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing,” Methods in Molecular Biology 627, 15 (2010).
[Crossref] [PubMed]

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nature Protocols 5, 491 (2010).
[Crossref] [PubMed]

2009 (1)

D. G. Drescher, N. A. Ramakrishnan, and M. J. Drescher, “Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Proteins in Inner-Ear Sensory Epithelia,” Methods in Molecular Biology 493, 323 (2009).
[Crossref]

2008 (1)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

R. Slavik, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–939 (2006).
[Crossref]

2002 (2)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

1999 (1)

J. Homola, H.B. Lu, and S.S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105 (1999).
[Crossref]

1998 (2)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films,” Langmuir 14(19), 5636 (1998).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1/3), 38–45 (1998).
[Crossref]

1972 (1)

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6(12), 4370 (1972).
[Crossref]

Abbas, A.

L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435 (2012).
[Crossref] [PubMed]

Aitchison, J. S.

Bachas, L. G.

Bahrami, F.

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films,” Langmuir 14(19), 5636 (1998).
[Crossref]

Chen, E.

L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435 (2012).
[Crossref] [PubMed]

Chen, H.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films,” Langmuir 14(19), 5636 (1998).
[Crossref]

Christy, R.W.

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6(12), 4370 (1972).
[Crossref]

Clendenning, J. B.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1/3), 38–45 (1998).
[Crossref]

Donev, E. U.

Drescher, D. G.

D. G. Drescher, N. A. Ramakrishnan, and M. J. Drescher, “Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Proteins in Inner-Ear Sensory Epithelia,” Methods in Molecular Biology 493, 323 (2009).
[Crossref]

Drescher, M. J.

D. G. Drescher, N. A. Ramakrishnan, and M. J. Drescher, “Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Proteins in Inner-Ear Sensory Epithelia,” Methods in Molecular Biology 493, 323 (2009).
[Crossref]

Furlong, C. E.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1/3), 38–45 (1998).
[Crossref]

Gandra, N.

L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435 (2012).
[Crossref] [PubMed]

Guo, J.

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

Hastings, J. T.

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotech. 13(1), 55–61 (2014).
[Crossref]

N. Nehru, E. U. Donev, G. M. Huda, L. Yu, Y. Wei, and J. T. Hastings, “Differentiating surface and bulk interactions using localized surface plasmon resonances of gold nanorods,” Opt. Express 20, 6905 (2012).
[Crossref] [PubMed]

Hastings, J.T.

Homola, J.

R. Slavik, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–939 (2006).
[Crossref]

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

J. Homola, H.B. Lu, and S.S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105 (1999).
[Crossref]

Huda, G. M.

Johnson, P.B.

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6(12), 4370 (1972).
[Crossref]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films,” Langmuir 14(19), 5636 (1998).
[Crossref]

Keathley, P. D.

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Kumaresh, P. B.

Law, S.

Lide, D.R.

D.R. Lide, 86th Handbook of Chemistry and Physics (CRC, 2006) Chap. 8.

Linliang, Y.

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotech. 13(1), 55–61 (2014).
[Crossref]

Lu, H.B.

J. Homola, H.B. Lu, and S.S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105 (1999).
[Crossref]

Maisonneuve, M.

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films,” Langmuir 14(19), 5636 (1998).
[Crossref]

Meunier, M.

Mirsky, V. M.

S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
[Crossref] [PubMed]

Mojahedi, M.

Nehru, N.

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotech. 13(1), 55–61 (2014).
[Crossref]

N. Nehru, E. U. Donev, G. M. Huda, L. Yu, Y. Wei, and J. T. Hastings, “Differentiating surface and bulk interactions using localized surface plasmon resonances of gold nanorods,” Opt. Express 20, 6905 (2012).
[Crossref] [PubMed]

Nenninger, G. G.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1/3), 38–45 (1998).
[Crossref]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Nizamov, S.

S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
[Crossref] [PubMed]

Piliarik, M.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Qin, D.

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nature Protocols 5, 491 (2010).
[Crossref] [PubMed]

Ramakrishnan, N. A.

D. G. Drescher, N. A. Ramakrishnan, and M. J. Drescher, “Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Proteins in Inner-Ear Sensory Epithelia,” Methods in Molecular Biology 493, 323 (2009).
[Crossref]

Scharf, L. L.

L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, 1991).

Schuck, P.

P. Schuck and H. Zhao, “The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing,” Methods in Molecular Biology 627, 15 (2010).
[Crossref] [PubMed]

Singamaneni, S.

L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435 (2012).
[Crossref] [PubMed]

Slavik, R.

R. Slavik, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–939 (2006).
[Crossref]

Tian, L.

L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435 (2012).
[Crossref] [PubMed]

Vaisocherová, H.

R. Slavik, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–939 (2006).
[Crossref]

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

Wang, J.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Wei, Y.

Whitesides, G. M.

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nature Protocols 5, 491 (2010).
[Crossref] [PubMed]

Xia, Y.

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nature Protocols 5, 491 (2010).
[Crossref] [PubMed]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films,” Langmuir 14(19), 5636 (1998).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1/3), 38–45 (1998).
[Crossref]

Yee, S.S.

J. Homola, H.B. Lu, and S.S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105 (1999).
[Crossref]

Yinan, W.

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotech. 13(1), 55–61 (2014).
[Crossref]

Yu, L.

Zhao, H.

P. Schuck and H. Zhao, “The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing,” Methods in Molecular Biology 627, 15 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
[Crossref] [PubMed]

Electron. Lett. (1)

J. Homola, H.B. Lu, and S.S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105 (1999).
[Crossref]

IEEE Trans. Nanotech. (1)

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotech. 13(1), 55–61 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

Langmuir (3)

L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435 (2012).
[Crossref] [PubMed]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films,” Langmuir 14(19), 5636 (1998).
[Crossref]

Meas. Sci. Technol. (2)

R. Slavik, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–939 (2006).
[Crossref]

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Methods in Molecular Biology (2)

P. Schuck and H. Zhao, “The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing,” Methods in Molecular Biology 627, 15 (2010).
[Crossref] [PubMed]

D. G. Drescher, N. A. Ramakrishnan, and M. J. Drescher, “Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Proteins in Inner-Ear Sensory Epithelia,” Methods in Molecular Biology 493, 323 (2009).
[Crossref]

Nature Protocols (1)

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nature Protocols 5, 491 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Physical Review B (1)

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6(12), 4370 (1972).
[Crossref]

Sens. Actuators B Chem. (1)

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1/3), 38–45 (1998).
[Crossref]

Other (5)

L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, 1991).

CAD/Art Services, Inc, http://www.outputcity.com

Thermo Fisher Scientific, T., EZ-Link HPDP-Biotin Instructions.

ProteoChem, http://www.proteochem.com

D.R. Lide, 86th Handbook of Chemistry and Physics (CRC, 2006) Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 SEM images for the fabricated nanorod structures of a width 70 nm and various lengths as (a) 120 nm, (b) 150 nm, and (d) 210 nm.
Fig. 2
Fig. 2 (a) Schematic for simulating periodic array of nanorods covered by an adlayer and a bulk RI of nB. Periodic boundary conditions were enforced such that the structure is periodic in the xy plane. The structure is excited using port 1 (lower xy plane), and the transmitted light is calculated using port 2. (b) Simulating a single nanorod, by using a perfectly matched layer (PML) over an integrating sphere to calculate the extinction efficiency. The nanorod is excited by a plane wave polarized along the z axis and propagating in the negative x direction.
Fig. 3
Fig. 3 Simulated transmission curves, demonstrating resonance wavelength shift with bulk RI change at (a) λ1=705 nm, (b) λ2=821 nm, and (c) λ3=1000 nm. (d) Shifts in the resonance wavelengths vs bulk RI change to extract the bulk RI sensitivity for each resonance.
Fig. 4
Fig. 4 Resonance wavelength shift against adlayer thickness change, based on the simulated results shown in the insets, for (a) the first resonance (λ1=705 nm), (b) the second resonance (λ2=821 nm), and (c) the third resonance (λ3=1000 nm). The EM decay length (ld) for each resonance is extracted such as Eq. (8) provides the best fit to the resonance wavelength shift vs adlayer thickness, and the sensitivity to adlayer thickness change (Sd) is calculated as the slope of each curve at the linear regime (dld/10).
Fig. 5
Fig. 5 Top panel: calculated SNR based on (a) the estimated adlayer thickness to its standard deviation, and (b) the estimated bulk RI change to its standard deviation. The linear response model and the MLE method were applied to the simulated shifts in resonance wavelengths Δλi with added uncertainties σλi such that SNRλi) = Δλi/σλi. Bottom panel: the percentage error associated with each method in (c) the estimated adlayer thickness and (d) the bulk RI change using Eq. (12) based on the true values used in the simulation.
Fig. 6
Fig. 6 Experimental set-up used to measure the transmission spectra associated with the nanorod structures. The inset is an exploded view for the PDMS fluidic channel integration with the gold nanorod substrate for injecting the biological samples.
Fig. 7
Fig. 7 Real time response to bulk RI changes and biotin-streptavin binding events based on three-resonance nanorod structures. The numbers on the graph represent the following: [1] DI water, [2] 8% ethanol solution, [3]16% ethanol solution, [4] Buffer, and [5] Streptavidin solution.
Fig. 8
Fig. 8 Top panel: simulated versus measured shift in resonance wavelengths against bulk RI changes. The bulk RI sensitivities, SB and S′B (nm/RIU), were determined as the slope of each graph. Bottom panel: simulated and measured resonance shifts versus the adlayer thickness based on the simulated (Sd) and corrected (S′d) adlayer sensitivities. Each corrected sensitivity (S′d) was obtained using Eq. (11) based on the measured bulk RI sensitivity S′B for each resonance.
Fig. 9
Fig. 9 Estimated adlayer thickness (left y-axis) and bulk RI change (right y-axis) based on the measured results after applying (a) LM1(λ1, λ2), (b) LM2(λ1, λ3), (c) LM3(λ2, λ3), and (d) the MLE method. The cycles on the graph represent the following: [1] DI water, [2] 8 % ethanol solution, [3] 16 % ethanol solution, [4] Buffer, and [5] Streptavidin solution.
Fig. 10
Fig. 10 (a) Error in estimated RI change after applying the linear response model (LM1, LM2, LM3), and the MLE method to the measured results. The error was calculated as the difference between the estimated RI changes and the reported counterparts based on refractometer results for ethanol solutions of various concentrations (0%, 8%, and 16 %). The data is obtained from the first five steps in Fig. 9 (steps: 1, 2, 1, 3, 1). (b) Estimated adlayer thickness and (c) bulk RI change after applying the linear response model (LM1, LM2, LM3) and the MLE method to the surface binding experimental results. The error bars denote the standard deviation of the estimated values obtained from the last three steps in Fig. 9 (steps: 4, 5, 4).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Δ λ i = S B i Δ n + S d i d
[ Δ n 12 d 12 ] = [ S B 1 S d 1 S B 2 S d 2 ] 1 [ Δ λ 1 Δ λ 2 ] LM 1 : from λ 1 , λ 2 , [ Δ n 13 d 13 ] = [ S B 1 S d 1 S B 3 S d 3 ] 1 [ Δ λ 1 Δ λ 3 ] LM 2 : from λ 1 , λ 3 , [ Δ n 23 d 23 ] = [ S B 2 S d 2 S B 3 S d 3 ] 1 [ Δ λ 2 Δ λ 3 ] LM 3 : from λ 2 , λ 3
d i = C d i d ^ + ε d i
Δ n i = C n i Δ n ^ ± ε n i
d = [ d 1 d i ] , Δ n = [ Δ n 1 Δ n i ]
R d = [ R d 11 R d 1 i R d i 1 R d i i ] ; R n = [ R n 11 R n 1 i R n i 1 R n i i ]
i 𝒩 ( d 1 , d i | C d 1 d ^ , C d i d ^ , R d ) 1 ( 2 π ) i / 2 | R d | 1 / 2 exp ( 1 2 R d i ( d i C d i d ^ ) 2 )
P ( d | d ^ C d , R d ) = 1 ( 2 π ) i / 2 | R d | 1 / 2 exp ( 1 2 ( d d ^ C d ) T R d 1 ( d d ^ C d ) )
ln ( P ( d | d ^ C d , R d ) ) = i 2 ln ( 2 π ) 1 2 ln | R d | 1 2 ( d d ^ C d ) T R d 1 ( d d ^ C d )
d ^ ln ( P ( d | d ^ C d , R d ) ) d ^ ( ( d d ^ C d ) T R d 1 ( d d ^ C d ) ) = 0
d ^ = C d T R d 1 d C d T R d 1 C d , R d 1 = [ R d 11 1 R d 1 i 1 R d i 1 1 R d i i 1 ]
d ^ = m = 1 i k = 1 i d m R d m k 1 m = 1 i k = 1 i R d m k 1 , Δ n ^ = m = 1 i k = 1 i Δ n m R n m k 1 m = 1 i k = 1 i R n m k 1
d ^ = ( R d 11 1 + R d 12 1 + R d 13 1 ) d 1 + ( R d 12 1 + R d 22 1 + R d 23 1 ) d 2 + ( R d 23 1 + R d 23 1 + R d 33 1 ) d 3 R d 11 1 + R d 22 1 + R d 33 1 + 2 ( R d 12 1 + R d 13 1 + R d 23 1 )
Δ n ^ = ( R n 11 1 + R n 12 1 + R n 13 1 ) Δ n 1 + ( R n 12 1 + R n 22 1 + R n 23 1 ) Δ n 2 + ( R n 13 1 + R n 23 1 + R n 33 1 ) Δ n 3 R n 11 1 + R n 22 1 + R n 33 1 + 2 ( R d 12 1 + R d 13 1 + R d 23 1 )
Δ λ ( d ) = Δ λ max [ 1 exp ( 2 d / l d ) ]
Δ λ ( d ) = S d d
Δ λ ( l d / 10 ) = S d l d / 10 0.18 Δ λ max
S d = 1.8 Δ λ max / l d
S d = 1.8 S B ( n a n B ) / l d
x ^ % = x ^ x x × 100
S = [ S B 1 S d 1 S B 2 S d 2 ]
κ ( S ) = s s 1

Metrics