Abstract

We propose a resolution enhancement method for lensless in-line holographic microscope (LIHM) with spatially-extended light source, where the resolution is normally deteriorated by the insufficient spatial coherence of the illumination. In our LIHM setup, a light-emitting diode (LED), which was a spatially-extended light source, directly illuminated the sample, and the in-line hologram were recorded by a CMOS imaging sensor located behind the sample. In our holographic reconstruction process, the in-line hologram was first deconvoled with a properly resized image of the LED illumination area, and then back-propagated with scalar diffraction formula to reconstruct the sample image. We studied the hologram forming process and showed that the additional deconvolution process besides normal scalar diffraction reconstruction in LIHM can effectively enhance the imaging resolution. The resolution enhancements capability was calibrated by numerical simulations and imaging experiments with the U.S. air force target as the sample. We also used our LIHM to image the wing of a green lacewing to further demonstrate the capability of our methods for practical imaging applications. Our methods provide a way for LIHM to achieve satisfactory resolution with less stringent requirement for spatial coherence of the source and could reduce the cost for compact imaging system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lensless in-line holographic microscope with Talbot grating illumination

Shaodong Feng, Mingjun Wang, and Jigang Wu
Opt. Lett. 41(14) 3157-3160 (2016)

Lensless digital holographic microscope with light-emitting diode illumination

L. Repetto, E. Piano, and C. Pontiggia
Opt. Lett. 29(10) 1132-1134 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
    [PubMed]
  2. E. Serabyn, K. Liewer, C. Lindensmith, K. Wallace, and J. Nadeau, “Compact, lensless digital holographic microscope for remote microbiology,” Opt. Express 24(25), 28540–28548 (2016).
    [PubMed]
  3. S. Feng, M. Wang, and J. Wu, “Lensless in-line holographic microscope with Talbot grating illumination,” Opt. Lett. 41(14), 3157–3160 (2016).
    [PubMed]
  4. M. Sanz, J. A. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
    [PubMed]
  5. H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729–10741 (2001).
  6. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
  7. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
    [PubMed]
  8. Y. Hao and A. Asundi, “Resolution analysis of a digital holography system,” Appl. Opt. 50(2), 183–193 (2011).
    [PubMed]
  9. H. Meng, W. L. Anderson, F. Hussain, and D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
  10. P. Picart, “Speckle noise in digital holographic images: genesis and reduction methods,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th1A.1.
  11. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
    [PubMed]
  12. C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18(5), 4717–4726 (2010).
    [PubMed]
  13. J. Garcia-Sucerquia, “Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode,” Appl. Opt. 52(1), A232–A239 (2013).
    [PubMed]
  14. W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
    [PubMed]
  15. A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20(3), 3129–3143 (2012).
    [PubMed]
  16. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [PubMed]
  17. S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” Appl. Phys. (Berl.) 76, 8189–8191 (1994).
  18. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
    [PubMed]
  19. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004), Chap. 3.
  20. R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using Matlab (Prentice Hall, 2003) Chap. 5.
  21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1980), Chap. 10.
  22. W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A Workingperson’s Guide to Deconvolution in Light Microscopy,” Biotechniques 31(5), 1076–1078 (2001).
    [PubMed]
  23. T. E. Agbana, H. Gong, A. S. Amoah, V. Bezzubik, M. Verhaegen, and G. Vdovin, “aliasing, coherence, and resolution in a lensless holographic microscope,” Opt. Lett. 42(12), 2271–2274 (2017).
    [PubMed]
  24. S. Feng, M. Wang, and J. Wu, “Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction,” Opt. Commun. 402, 104–108 (2017).
  25. M. Kanka, R. Riesenberg, P. Petruck, and C. Graulig, “High resolution (NA = 0.8) in lensless in-line holographic microscopy with glass sample carriers,” Opt. Lett. 36(18), 3651–3653 (2011).
    [PubMed]

2017 (3)

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[PubMed]

S. Feng, M. Wang, and J. Wu, “Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction,” Opt. Commun. 402, 104–108 (2017).

T. E. Agbana, H. Gong, A. S. Amoah, V. Bezzubik, M. Verhaegen, and G. Vdovin, “aliasing, coherence, and resolution in a lensless holographic microscope,” Opt. Lett. 42(12), 2271–2274 (2017).
[PubMed]

2016 (2)

2014 (1)

2013 (1)

2012 (2)

A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20(3), 3129–3143 (2012).
[PubMed]

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

2011 (3)

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

Y. Hao and A. Asundi, “Resolution analysis of a digital holography system,” Appl. Opt. 50(2), 183–193 (2011).
[PubMed]

M. Kanka, R. Riesenberg, P. Petruck, and C. Graulig, “High resolution (NA = 0.8) in lensless in-line holographic microscopy with glass sample carriers,” Opt. Lett. 36(18), 3651–3653 (2011).
[PubMed]

2010 (2)

2004 (1)

2003 (1)

2002 (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).

2001 (2)

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A Workingperson’s Guide to Deconvolution in Light Microscopy,” Biotechniques 31(5), 1076–1078 (2001).
[PubMed]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729–10741 (2001).

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” Appl. Phys. (Berl.) 76, 8189–8191 (1994).

1993 (1)

Agbana, T. E.

Amoah, A. S.

Anderson, W. L.

Asundi, A.

Bezzubik, V.

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[PubMed]

Coskun, A. F.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[PubMed]

Feng, S.

S. Feng, M. Wang, and J. Wu, “Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction,” Opt. Commun. 402, 104–108 (2017).

S. Feng, M. Wang, and J. Wu, “Lensless in-line holographic microscope with Talbot grating illumination,” Opt. Lett. 41(14), 3157–3160 (2016).
[PubMed]

García, J.

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[PubMed]

Garcia-Sucerquia, J.

Gong, H.

Göröcs, Z.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Granero, L.

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[PubMed]

Graulig, C.

Greenbaum, A.

A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20(3), 3129–3143 (2012).
[PubMed]

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Hahn, J.

Hao, Y.

Hussain, F.

Isikman, S. O.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18(5), 4717–4726 (2010).
[PubMed]

Jericho, M. H.

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
[PubMed]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729–10741 (2001).

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).

Kanka, M.

Khademhosseinieh, B.

Kim, H.

Kim, M.

Kreuzer, H. J.

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
[PubMed]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729–10741 (2001).

Liewer, K.

Lindensmith, C.

Liu, D. D.

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

Luo, W.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
[PubMed]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729–10741 (2001).

Meng, H.

Micó, V.

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[PubMed]

Moon, E.

Mudanyali, O.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

Mukai, T.

S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” Appl. Phys. (Berl.) 76, 8189–8191 (1994).

Nadeau, J.

Nakamura, S.

S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” Appl. Phys. (Berl.) 76, 8189–8191 (1994).

Oh, C.

Ozcan, A.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20(3), 3129–3143 (2012).
[PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[PubMed]

C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18(5), 4717–4726 (2010).
[PubMed]

Petruck, P.

Piano, E.

Picazo-Bueno, J. A.

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[PubMed]

Pontiggia, C.

Repetto, L.

Riesenberg, R.

Roh, J.

Sanz, M.

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[PubMed]

Schaefer, L. H.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A Workingperson’s Guide to Deconvolution in Light Microscopy,” Biotechniques 31(5), 1076–1078 (2001).
[PubMed]

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).

Senoh, M.

S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” Appl. Phys. (Berl.) 76, 8189–8191 (1994).

Serabyn, E.

Sikora, U.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

Su, T. W.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[PubMed]

Swedlow, J. R.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A Workingperson’s Guide to Deconvolution in Light Microscopy,” Biotechniques 31(5), 1076–1078 (2001).
[PubMed]

Vdovin, G.

Verhaegen, M.

Wallace, K.

Wallace, W.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A Workingperson’s Guide to Deconvolution in Light Microscopy,” Biotechniques 31(5), 1076–1078 (2001).
[PubMed]

Wang, M.

S. Feng, M. Wang, and J. Wu, “Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction,” Opt. Commun. 402, 104–108 (2017).

S. Feng, M. Wang, and J. Wu, “Lensless in-line holographic microscope with Talbot grating illumination,” Opt. Lett. 41(14), 3157–3160 (2016).
[PubMed]

Wu, J.

S. Feng, M. Wang, and J. Wu, “Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction,” Opt. Commun. 402, 104–108 (2017).

S. Feng, M. Wang, and J. Wu, “Lensless in-line holographic microscope with Talbot grating illumination,” Opt. Lett. 41(14), 3157–3160 (2016).
[PubMed]

Xu, W.

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
[PubMed]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729–10741 (2001).

Xue, L.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Yaglidere, O.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” Appl. Phys. (Berl.) 76, 8189–8191 (1994).

Biotechniques (1)

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A Workingperson’s Guide to Deconvolution in Light Microscopy,” Biotechniques 31(5), 1076–1078 (2001).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (1)

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729–10741 (2001).

Lab Chip (1)

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[PubMed]

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).

Nat. Methods (1)

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Opt. Commun. (1)

S. Feng, M. Wang, and J. Wu, “Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction,” Opt. Commun. 402, 104–108 (2017).

Opt. Express (5)

Opt. Lett. (5)

Sci. Rep. (1)

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. García, and V. Micó, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[PubMed]

Other (4)

P. Picart, “Speckle noise in digital holographic images: genesis and reduction methods,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th1A.1.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004), Chap. 3.

R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using Matlab (Prentice Hall, 2003) Chap. 5.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1980), Chap. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The system setup of the LIHM system with spatially-extended light source illumination and the photograph of the setup used in our experiment. The enlarged LED image acquired by microscope is also shown.
Fig. 2
Fig. 2 Schematic of our reconstruction method in LIHM with spatially-extended light source.
Fig. 3
Fig. 3 Numerical simulation results of image reconstructions in LIHM with spatially-extended light source and, for comparison, laser source. (a)-(c) in-line holograms, direct reconstruction results, sub-holograms after deconvolution, and reconstruction results with our proposed methods for source-to-sample distances Z1 = 3, 6, 9 cm, respectively. The corresponding simulation PSF is shown at the top-left of the sub-figures in the last column. (d) in-line holograms and holographic reconstruction result with laser illumination.
Fig. 4
Fig. 4 (a) The microscope image of the LED acquired by 10X objective; (b) The enlarged image of LED illumination area as indicated in the (a); (c) The calculated PSF.
Fig. 5
Fig. 5 Imaging results of USAF target by LIHM with LED illumination and, for comparison, pinhole-associated LED and laser illumination. (a)-(c) in-line holograms, direct reconstruction results, reconstruction results with our proposed method, and section curves of bars in the USAF target extracted from the two reconstructed images as indicated at source-to-sample distances Z1 = 3, 6, 9 cm, respectively; (d)(e) in-line holograms, holographic reconstruction result, and section curve of the bar in USAF target as indicated with 25-μm pinhole associated LED and laser illuminations, respectively.
Fig. 6
Fig. 6 Imaging results of the wing of a green lacewing by LIHM with LED illumination and, for comparison, pinhole-associated LED and laser illumination. (a)-(c) in-line holograms, direct reconstruction results, sub-holograms after deconvolution, and reconstruction results with our proposed methods for source-to-sample distances Z1 = 3, 6, 9 cm, respectively; (d)(e) in-line holograms and holographic reconstruction result with 25-μm pinhole associated LED and laser illuminations, respectively; (f) microscope image observed by a 10X objective; (g) wide field-of-view image of the wing sample by LIHM with our proposed method.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I 3 ( x 3 , y 3 )= I( x 3 Z 2 Z 1 x 1 , y 3 Z 2 Z 1 y 1 )S( x 1 , y 1 )d x 1 d y 1
I 3 ( x 3 , y 3 )=I( x 3 , y 3 )PSF( x 3 , y 3 )
PSF( x 3 , y 3 )= ( Z 1 Z 2 ) 2 S( Z 1 Z 2 x 3 , Z 1 Z 2 y 3 )
I( x 3 , y 3 )= | U( x 3 , y 3 ) | 2
U( x 3 , y 3 )=F T 1 { FT{ U 1 ( x 2 , y 2 )}exp(j2π Z 2 (1/λ) 2 f x 2 f y 2 ) }

Metrics