Abstract

A soft shape sensor for 3-dimensional object shape measurement is demonstrated. The proposed sensor is based on dual-layer fiber Bragg grating arrays with an orthogonal mesh structure, which enables multi-point bi-directional shape sensing. The 3D shape reconstruction is based on a bi-directional curvature measurement at each sensing point, which is achieved through measuring the direction and amount of wavelength shift of each off-center embedded FBG. The conversion coefficient between the wavelength shift and bending curvatures is acquired and is used to convert the change in FBG to the corresponding bending curvatures and bending direction. The measurement error on the bending radius of each sensing point is about 2.7%. A 3D shape of the object surface is reconstructed with the help of a curve fitting method based on the curvature information across the whole FBG mesh. This design successfully achieved visualized 3D shape sensing, which has great practical value in soft robotics and biomedical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides

Kenneth K.C. Lee, Adrian Mariampillai, Moez Haque, Beau A. Standish, Victor X.D. Yang, and Peter R. Herman
Opt. Express 21(20) 24076-24086 (2013)

Optical fiber shape sensing of polyimide skin for a flexible morphing wing

Guangkai Sun, Hong Li, Mingli Dong, Xiaoping Lou, and Lianqing Zhu
Appl. Opt. 56(33) 9325-9332 (2017)

Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper

Wei Cui, Jinhai Si, Tao Chen, and Xun Hou
Opt. Express 23(9) 11031-11036 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Song, Z. Li, M. Q. H. Meng, H. Yu, and H. Ren, “Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves,” IEEE Sens. J. 15(11), 6326–6334 (2015).
    [Crossref]
  2. Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
    [PubMed]
  3. A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, Smarter, Softer: Next-Generation Wearable Robots,” IEEE J. Robot. Autom. 21(4), 22–33 (2014).
    [Crossref]
  4. S. A. Daud, N. H. Mahmood, P. L. Leow, R. Sudirman, and M. A. Kadir, “Automated sensor rig in detecting shape of an object,” Procedia Comput. Sci. 42, 153–159 (2014).
    [Crossref]
  5. O. Medina, A. Shapiro, and N. Shvalb, “Resistor-Based Shape Sensor for a Spatial Flexible Manifold,” IEEE Sens. J. 17(1), 46–50 (2017).
    [Crossref]
  6. C. Majidi, R. Kramer, and R. J. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Mater. Struct. 20(10), 105017 (2011).
    [Crossref]
  7. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
    [Crossref]
  8. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
    [Crossref] [PubMed]
  9. X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” 2007 International Conference on Information Acquisition, 227–232 (2007).
    [Crossref]
  10. D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings,” Sci. Rep. 5(1), 17415 (2015).
    [Crossref] [PubMed]
  11. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  12. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
    [Crossref]
  13. L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
    [Crossref]
  14. J. Ge, H. Feng, Y. Chen, Z. T. H. Tse, and M. P. Fok, “Spiral-structured fiber Bragg grating for contact force sensing through direct power measurement,” Opt. Express 22(9), 10439–10445 (2014).
    [Crossref] [PubMed]
  15. L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “3-Dimensional Soft Shape Sensor based on Dual-layer Orthogonal Fiber Bragg Grating Mesh,” Optical Fiber Communications Conference (OFC), Th3H.2 (2017).
    [Crossref]
  16. J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
    [Crossref]
  17. X. Chen, C. Zhang, D. J. Webb, R. Suo, G. D. Peng, and K. Kalli, “Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre,” Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 750327 (2009).
    [Crossref]
  18. Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing,” IEEE International Conference on Robotics and Automation, 1510–1516 (2007).
    [Crossref]
  19. T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
    [Crossref] [PubMed]
  20. A. P. Boresi, R. J. Schmidt, and O. M. Sidebottom, Advanced mechanics of materials (Wiley, 1993).

2017 (1)

O. Medina, A. Shapiro, and N. Shvalb, “Resistor-Based Shape Sensor for a Spatial Flexible Manifold,” IEEE Sens. J. 17(1), 46–50 (2017).
[Crossref]

2016 (2)

L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
[Crossref]

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

2015 (2)

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

S. Song, Z. Li, M. Q. H. Meng, H. Yu, and H. Ren, “Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves,” IEEE Sens. J. 15(11), 6326–6334 (2015).
[Crossref]

2014 (3)

A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, Smarter, Softer: Next-Generation Wearable Robots,” IEEE J. Robot. Autom. 21(4), 22–33 (2014).
[Crossref]

S. A. Daud, N. H. Mahmood, P. L. Leow, R. Sudirman, and M. A. Kadir, “Automated sensor rig in detecting shape of an object,” Procedia Comput. Sci. 42, 153–159 (2014).
[Crossref]

J. Ge, H. Feng, Y. Chen, Z. T. H. Tse, and M. P. Fok, “Spiral-structured fiber Bragg grating for contact force sensing through direct power measurement,” Opt. Express 22(9), 10439–10445 (2014).
[Crossref] [PubMed]

2012 (2)

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
[Crossref] [PubMed]

2011 (1)

C. Majidi, R. Kramer, and R. J. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Mater. Struct. 20(10), 105017 (2011).
[Crossref]

2010 (1)

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

1999 (1)

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1982 (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Albert, J.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

Allsop, T.

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

Ania Castañón, J. D.

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

Asbeck, A. T.

A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, Smarter, Softer: Next-Generation Wearable Robots,” IEEE J. Robot. Autom. 21(4), 22–33 (2014).
[Crossref]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bennion, I.

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

Bhamber, R.

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

Black, R. J.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing,” IEEE International Conference on Robotics and Automation, 1510–1516 (2007).
[Crossref]

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Chau, K.

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing,” IEEE International Conference on Robotics and Automation, 1510–1516 (2007).
[Crossref]

Chen, X.

X. Chen, C. Zhang, D. J. Webb, R. Suo, G. D. Peng, and K. Kalli, “Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre,” Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 750327 (2009).
[Crossref]

Chen, Y.

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

J. Ge, H. Feng, Y. Chen, Z. T. H. Tse, and M. P. Fok, “Spiral-structured fiber Bragg grating for contact force sensing through direct power measurement,” Opt. Express 22(9), 10439–10445 (2014).
[Crossref] [PubMed]

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Cutkosky, M. R.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing,” IEEE International Conference on Robotics and Automation, 1510–1516 (2007).
[Crossref]

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Daniel, B.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Daud, S. A.

S. A. Daud, N. H. Mahmood, P. L. Leow, R. Sudirman, and M. A. Kadir, “Automated sensor rig in detecting shape of an object,” Procedia Comput. Sci. 42, 153–159 (2014).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

De Rossi, S. M. M.

A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, Smarter, Softer: Next-Generation Wearable Robots,” IEEE J. Robot. Autom. 21(4), 22–33 (2014).
[Crossref]

Ding, Y.

A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, Smarter, Softer: Next-Generation Wearable Robots,” IEEE J. Robot. Autom. 21(4), 22–33 (2014).
[Crossref]

Dixon, A.

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

Elayaperumal, S.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Feng, D.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

Feng, H.

Fok, M. P.

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
[Crossref]

J. Ge, H. Feng, Y. Chen, Z. T. H. Tse, and M. P. Fok, “Spiral-structured fiber Bragg grating for contact force sensing through direct power measurement,” Opt. Express 22(9), 10439–10445 (2014).
[Crossref] [PubMed]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Galiana, I.

A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, Smarter, Softer: Next-Generation Wearable Robots,” IEEE J. Robot. Autom. 21(4), 22–33 (2014).
[Crossref]

Ge, J.

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
[Crossref]

J. Ge, H. Feng, Y. Chen, Z. T. H. Tse, and M. P. Fok, “Spiral-structured fiber Bragg grating for contact force sensing through direct power measurement,” Opt. Express 22(9), 10439–10445 (2014).
[Crossref] [PubMed]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

James, A. E.

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

Kadir, M. A.

S. A. Daud, N. H. Mahmood, P. L. Leow, R. Sudirman, and M. A. Kadir, “Automated sensor rig in detecting shape of an object,” Procedia Comput. Sci. 42, 153–159 (2014).
[Crossref]

Kalli, K.

X. Chen, C. Zhang, D. J. Webb, R. Suo, G. D. Peng, and K. Kalli, “Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre,” Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 750327 (2009).
[Crossref]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kramer, R.

C. Majidi, R. Kramer, and R. J. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Mater. Struct. 20(10), 105017 (2011).
[Crossref]

Kwok, K. W.

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Leow, P. L.

S. A. Daud, N. H. Mahmood, P. L. Leow, R. Sudirman, and M. A. Kadir, “Automated sensor rig in detecting shape of an object,” Procedia Comput. Sci. 42, 153–159 (2014).
[Crossref]

Li, Z.

S. Song, Z. Li, M. Q. H. Meng, H. Yu, and H. Ren, “Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves,” IEEE Sens. J. 15(11), 6326–6334 (2015).
[Crossref]

Lloyd, G.

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

Mahmood, N. H.

S. A. Daud, N. H. Mahmood, P. L. Leow, R. Sudirman, and M. A. Kadir, “Automated sensor rig in detecting shape of an object,” Procedia Comput. Sci. 42, 153–159 (2014).
[Crossref]

Majidi, C.

C. Majidi, R. Kramer, and R. J. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Mater. Struct. 20(10), 105017 (2011).
[Crossref]

Medina, O.

O. Medina, A. Shapiro, and N. Shvalb, “Resistor-Based Shape Sensor for a Spatial Flexible Manifold,” IEEE Sens. J. 17(1), 46–50 (2017).
[Crossref]

Meng, M. Q. H.

S. Song, Z. Li, M. Q. H. Meng, H. Yu, and H. Ren, “Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves,” IEEE Sens. J. 15(11), 6326–6334 (2015).
[Crossref]

Miller, M. I.

L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
[Crossref]

Miller, M. R.

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

Moore, J. P.

Moslehi, B.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Nilsson, K. R.

L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
[Crossref]

Park, Y. L.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing,” IEEE International Conference on Robotics and Automation, 1510–1516 (2007).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Peng, G. D.

X. Chen, C. Zhang, D. J. Webb, R. Suo, G. D. Peng, and K. Kalli, “Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre,” Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 750327 (2009).
[Crossref]

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Qian, J.

X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” 2007 International Conference on Information Acquisition, 227–232 (2007).
[Crossref]

Qiao, X.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

Rao, Y. J.

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[Crossref]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Ren, H.

S. Song, Z. Li, M. Q. H. Meng, H. Yu, and H. Ren, “Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves,” IEEE Sens. J. 15(11), 6326–6334 (2015).
[Crossref]

Rogge, M. D.

Ryu, S. C.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Savall, J.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Shapiro, A.

O. Medina, A. Shapiro, and N. Shvalb, “Resistor-Based Shape Sensor for a Spatial Flexible Manifold,” IEEE Sens. J. 17(1), 46–50 (2017).
[Crossref]

Shen, L.

X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” 2007 International Conference on Information Acquisition, 227–232 (2007).
[Crossref]

Shin, M.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Shvalb, N.

O. Medina, A. Shapiro, and N. Shvalb, “Resistor-Based Shape Sensor for a Spatial Flexible Manifold,” IEEE Sens. J. 17(1), 46–50 (2017).
[Crossref]

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Song, S.

S. Song, Z. Li, M. Q. H. Meng, H. Yu, and H. Ren, “Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves,” IEEE Sens. J. 15(11), 6326–6334 (2015).
[Crossref]

Sudirman, R.

S. A. Daud, N. H. Mahmood, P. L. Leow, R. Sudirman, and M. A. Kadir, “Automated sensor rig in detecting shape of an object,” Procedia Comput. Sci. 42, 153–159 (2014).
[Crossref]

Suo, R.

X. Chen, C. Zhang, D. J. Webb, R. Suo, G. D. Peng, and K. Kalli, “Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre,” Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 750327 (2009).
[Crossref]

Tse, Z. T. H.

L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
[Crossref]

J. Ge, H. Feng, Y. Chen, Z. T. H. Tse, and M. P. Fok, “Spiral-structured fiber Bragg grating for contact force sensing through direct power measurement,” Opt. Express 22(9), 10439–10445 (2014).
[Crossref] [PubMed]

Walsh, C. J.

A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, Smarter, Softer: Next-Generation Wearable Robots,” IEEE J. Robot. Autom. 21(4), 22–33 (2014).
[Crossref]

Webb, D.

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

Webb, D. J.

X. Chen, C. Zhang, D. J. Webb, R. Suo, G. D. Peng, and K. Kalli, “Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre,” Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 750327 (2009).
[Crossref]

Wood, R. J.

C. Majidi, R. Kramer, and R. J. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Mater. Struct. 20(10), 105017 (2011).
[Crossref]

Xu, L.

L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
[Crossref]

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

Yi, X.

X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” 2007 International Conference on Information Acquisition, 227–232 (2007).
[Crossref]

Yu, H.

S. Song, Z. Li, M. Q. H. Meng, H. Yu, and H. Ren, “Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves,” IEEE Sens. J. 15(11), 6326–6334 (2015).
[Crossref]

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, R. Suo, G. D. Peng, and K. Kalli, “Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre,” Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 750327 (2009).
[Crossref]

Zhang, Y.

X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” 2007 International Conference on Information Acquisition, 227–232 (2007).
[Crossref]

Zhang, Z.

X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” 2007 International Conference on Information Acquisition, 227–232 (2007).
[Crossref]

Zhou, W.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

IEEE J. Robot. Autom. (1)

A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, Smarter, Softer: Next-Generation Wearable Robots,” IEEE J. Robot. Autom. 21(4), 22–33 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

IEEE Sens. J. (3)

L. Xu, M. I. Miller, J. Ge, K. R. Nilsson, Z. T. H. Tse, and M. P. Fok, “Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters,” IEEE Sens. J. 16(12), 4771–4775 (2016).
[Crossref]

S. Song, Z. Li, M. Q. H. Meng, H. Yu, and H. Ren, “Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves,” IEEE Sens. J. 15(11), 6326–6334 (2015).
[Crossref]

O. Medina, A. Shapiro, and N. Shvalb, “Resistor-Based Shape Sensor for a Spatial Flexible Manifold,” IEEE Sens. J. 17(1), 46–50 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Tech. 30(4), 472–511 (1982).
[Crossref]

IEEE/ASME Trans. Mechatron. (1)

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

J. Biomed. Opt. (1)

T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt. 17(11), 117001 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[Crossref]

Procedia Comput. Sci. (1)

S. A. Daud, N. H. Mahmood, P. L. Leow, R. Sudirman, and M. A. Kadir, “Automated sensor rig in detecting shape of an object,” Procedia Comput. Sci. 42, 153–159 (2014).
[Crossref]

Sci. Rep. (1)

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

C. Majidi, R. Kramer, and R. J. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Mater. Struct. 20(10), 105017 (2011).
[Crossref]

Other (5)

X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” 2007 International Conference on Information Acquisition, 227–232 (2007).
[Crossref]

L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “3-Dimensional Soft Shape Sensor based on Dual-layer Orthogonal Fiber Bragg Grating Mesh,” Optical Fiber Communications Conference (OFC), Th3H.2 (2017).
[Crossref]

A. P. Boresi, R. J. Schmidt, and O. M. Sidebottom, Advanced mechanics of materials (Wiley, 1993).

X. Chen, C. Zhang, D. J. Webb, R. Suo, G. D. Peng, and K. Kalli, “Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre,” Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 750327 (2009).
[Crossref]

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing,” IEEE International Conference on Robotics and Automation, 1510–1516 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed 3D shape sensor based on dual-layer orthogonal FBG mesh. Green gratings: FBGs at the top layer; Red gratings: FBGs at the bottom layer. (b) Prototype of the fabricated soft 3D shape sensor. (c) Illustration of different layers of the silicone sheet and the dual-layer orthogonal FBG mesh structure.

Fig. 2
Fig. 2

Measurement mechanism of each of the sensing point working as a curvature sensor, when measuring an object with a (a) positive bending curvature and (b) negative bending curvature. (c) Wavelength shifts in response to different bending curvatures for both positive and negative bending directions.

Fig. 3
Fig. 3

Optical spectra of the 18 FBG sensing wavelengths. Insets: zoom in view of each FBG reflection peak.

Fig. 4
Fig. 4

Examples of changes in curvature at the shape sensor. Each section - ab, bc, and cd correspond to each FBG sensor arc.

Fig. 5
Fig. 5

(a)-(c) Testing objects #1 to #3; (d)-(f) Reconstructed 3D shapes of the corresponding testing objects.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x 1 =( ρ 2 ρ 1 )sin θ 2 2 , z 1 =( ρ 2 ρ 1 )cos θ 2 2 .
x 3 =( ρ 2 + ρ 3 )sin θ 2 2 , z 3 =( ρ 2 + ρ 3 )cos θ 2 2 .
x a =(2 ρ 1 sin θ 1 2 cos( θ 1 2 + θ 2 2 )+ ρ 2 sin θ 2 2 ), z a = ρ 2 cos θ 2 2 2 ρ 1 sin θ 1 2 sin( θ 1 2 + θ 2 2 ).
x b =sin θ 2 2 ρ 2 , z b =cos θ 2 2 ρ 2 .
x c =sin θ 2 2 ρ 2 , z c =cos θ 2 2 ρ 2 .
x d = ρ 2 sin θ 2 2 +2 ρ 3 sin θ 3 2 cos( θ 3 2 θ 2 2 ), z d = ρ 2 cos θ 2 2 +2 ρ 3 sin θ 3 2 sin( θ 3 2 θ 2 2 ).
z ab = ρ 1 2 (x+( ρ 2 ρ 1 )sin θ 2 2 ) 2 +( ρ 2 ρ 1 )cos θ 2 2 ,( x a <x< x b , z a < z ab < z b ).
z bc = ρ 2 2 x 2 ,( x b <x< x c , z b < z bc < z c ).
z cd = ρ 3 2 (x( ρ 2 + ρ 3 )sin θ 2 2 ) 2 +( ρ 2 + ρ 3 )cos θ 2 2 ,( x c <x< x d , z c < z cd < z d ).

Metrics