Abstract

A pump source is one of the essential prerequisites in order to achieve lasing in a system, and, in most cases, a stronger pump leads to higher laser power at the output. However, this behavior may be suppressed if two pump beams are used. In this work, we show that lasing around the 1600 nm band can be suppressed completely if two pumps, at wavelengths of 980 nm and 1550 nm, are applied simultaneously to an Yb:Er-doped microlaser, whereas it can be revived by switching one of them off. This phenomenon can be explained by assuming that the presence of one pump (980 nm) changes the role of the other pump (1550 nm); more specifically, the 1550 nm pump starts to consume the population inversion instead of increasing it when the 980 nm pump power exceeds a certain value. As a result, the two pump fields lead to a closed-loop transition within the gain medium (i.e., the erbium ions). This study unveils an interplay similar to coherence effects between different pump pathways, thereby providing a reference for designing the laser pump, and may have applications in lasing control.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low-threshold Er:Yb sol-gel microlaser on silicon

Hsiu-Sheng Hsu, Can Cai, and Andrea M. Armani
Opt. Express 17(25) 23265-23271 (2009)

Single mode green lasing and multicolor luminescent emission from an Er3+-Yb3+ co-doped compound fluorosilicate glass microsphere resonator

Xin Wang, Yongze Yu, Shunbin Wang, Jonathan M. Ward, Síle Nic Chormaic, and Pengfei Wang
OSA Continuum 1(1) 261-273 (2018)

Sequence lasing in a gain-switched Yb3+,Er3+-doped silica double-clad fiber laser

Stuart D. Jackson, Ben C. Dickinson, and Terence A. King
Appl. Opt. 41(9) 1698-1703 (2002)

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-state Laser Engineering, vol. 1 (Springer, 2013).
  2. P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).
  3. K. D. V. Sinivasagam, M. A. G. Abushagur, and F. Tumiran, “New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier,” IEICE Electron. Expresss 2, 154–158 (2005).
    [Crossref]
  4. M. Bray, T. Reid, K. Jones, and M. Poettcker, “Model to predict spectral shape of an hybrid 980nm & 1480nm pumped erbium doped fibre amplifier,” in “Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication” (Optical Society of America, 1999), p. WG4.
  5. T. L. Koch, Optical Fiber Telecommunications III, vol. 2 (Academic, 1997).
  6. B.-H. Choi, H.-H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump,” IEEE Photon. Technol. Lett. 13, 109–111 (2001).
    [Crossref]
  7. J. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11, 42–44 (1999).
    [Crossref]
  8. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29, 1075–1077 (2004).
    [Crossref] [PubMed]
  9. T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
    [Crossref]
  10. L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
    [Crossref]
  11. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotech. 6, 428–432 (2011).
    [Crossref]
  12. H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975–978 (2014).
    [Crossref] [PubMed]
  13. L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
    [Crossref] [PubMed]
  14. B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
    [Crossref] [PubMed]
  15. Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308 (2017).
    [Crossref] [PubMed]
  16. J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6, 25152 (2016).
    [Crossref] [PubMed]
  17. J. M. Ward, P. Féron, and S. Nic Chormaic, “A taper-fused microspherical laser source,” IEEE Photon. Technol. Lett. 20, 392–394 (2008).
    [Crossref]
  18. Y. Wu, J. M. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF 4–BaF 2–NaF–AlF 3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
    [Crossref]
  19. B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
    [Crossref] [PubMed]
  20. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
    [Crossref]
  21. Z. Cai, A. Chardon, H. Xu, P. Féron, and G. M. Stéphan, “Laser characteristics at 1535 nm and thermal effects of an er: Yb phosphate glass microchip pumped by ti: sapphire laser,” Opt. Commun. 203, 301–313 (2002).
    [Crossref]
  22. C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.
  23. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” J. Opt. Soc. Am B 24, 2454–2460 (2007).
    [Crossref]
  24. J. M. Ward, D. G. OShea, B. J. Shortt, and S. Nic Chormaic, “Optical bistability in er-yb codoped phosphate glass microspheres at room temperature,” J. Appl. Phys. 102, 023104 (2007).
    [Crossref]
  25. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [Crossref]
  26. R. Wu, J. D. Myers, M. J. Myers, and C. F. Rapp, “Fluorescence lifetime and 980nm pump energy transfer dynamics in erbium and ytterbium co-doped phosphate laser glasses,” in “High-Power Lasers and Applications,” (International Society for Optics and Photonics, 2003), pp. 11–17.
  27. R. Paschotta, “article on ’erbium-doped gain media’ in the encyclopedia of laser physics and technology,” https://www.rp-photonics.com/erbium_doped_gain_media.html . Accessed on 2017-05-08.
  28. L. Da Vila, L. Gomes, L. Tarelho, S. Ribeiro, and Y. Messadeq, “Mechanism of the Yb–Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93, 3873–3880 (2003).
    [Crossref]
  29. F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
    [Crossref]
  30. X.-F. Liu, F. Lei, M. Gao, X. Yang, C. Wang, Ş. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
    [Crossref] [PubMed]
  31. J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
    [Crossref]
  32. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
    [Crossref] [PubMed]
  33. O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
    [Crossref] [PubMed]

2017 (2)

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308 (2017).
[Crossref] [PubMed]

2016 (3)

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

X.-F. Liu, F. Lei, M. Gao, X. Yang, C. Wang, Ş. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
[Crossref] [PubMed]

2014 (4)

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref] [PubMed]

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

2013 (1)

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

2011 (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotech. 6, 428–432 (2011).
[Crossref]

2010 (1)

Y. Wu, J. M. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF 4–BaF 2–NaF–AlF 3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

2008 (1)

J. M. Ward, P. Féron, and S. Nic Chormaic, “A taper-fused microspherical laser source,” IEEE Photon. Technol. Lett. 20, 392–394 (2008).
[Crossref]

2007 (3)

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” J. Opt. Soc. Am B 24, 2454–2460 (2007).
[Crossref]

J. M. Ward, D. G. OShea, B. J. Shortt, and S. Nic Chormaic, “Optical bistability in er-yb codoped phosphate glass microspheres at room temperature,” J. Appl. Phys. 102, 023104 (2007).
[Crossref]

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

2005 (2)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

K. D. V. Sinivasagam, M. A. G. Abushagur, and F. Tumiran, “New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier,” IEICE Electron. Expresss 2, 154–158 (2005).
[Crossref]

2004 (1)

2003 (2)

L. Da Vila, L. Gomes, L. Tarelho, S. Ribeiro, and Y. Messadeq, “Mechanism of the Yb–Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93, 3873–3880 (2003).
[Crossref]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

2002 (1)

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. M. Stéphan, “Laser characteristics at 1535 nm and thermal effects of an er: Yb phosphate glass microchip pumped by ti: sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

2001 (1)

B.-H. Choi, H.-H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump,” IEEE Photon. Technol. Lett. 13, 109–111 (2001).
[Crossref]

1999 (1)

J. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11, 42–44 (1999).
[Crossref]

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

1992 (1)

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Abushagur, M. A. G.

K. D. V. Sinivasagam, M. A. G. Abushagur, and F. Tumiran, “New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier,” IEICE Electron. Expresss 2, 154–158 (2005).
[Crossref]

Ahn, S. J.

J. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11, 42–44 (1999).
[Crossref]

Arnaud, C.

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

Astafiev, O.

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

Becker, P. M.

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Bender, C.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Boustimi, M.

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

Bray, M.

M. Bray, T. Reid, K. Jones, and M. Poettcker, “Model to predict spectral shape of an hybrid 980nm & 1480nm pumped erbium doped fibre amplifier,” in “Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication” (Optical Society of America, 1999), p. WG4.

Brenci, M.

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Budni, P. A.

Cai, Z.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. M. Stéphan, “Laser characteristics at 1535 nm and thermal effects of an er: Yb phosphate glass microchip pumped by ti: sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Carmon, T.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

Chardon, A.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. M. Stéphan, “Laser characteristics at 1535 nm and thermal effects of an er: Yb phosphate glass microchip pumped by ti: sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Chen, W.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

Chicklis, E.

Choi, B.-H.

B.-H. Choi, H.-H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump,” IEEE Photon. Technol. Lett. 13, 109–111 (2001).
[Crossref]

Christodoulides, D. N.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref] [PubMed]

Chu, M.

B.-H. Choi, H.-H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump,” IEEE Photon. Technol. Lett. 13, 109–111 (2001).
[Crossref]

Cline, T.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Da Vila, L.

L. Da Vila, L. Gomes, L. Tarelho, S. Ribeiro, and Y. Messadeq, “Mechanism of the Yb–Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93, 3873–3880 (2003).
[Crossref]

Delavaux, J.-M.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

DiGiovanni, D.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Dubinskii, M.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” J. Opt. Soc. Am B 24, 2454–2460 (2007).
[Crossref]

Fan, X.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

Federici, J.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Feng, L.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Feron, P.

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

Féron, P.

J. M. Ward, P. Féron, and S. Nic Chormaic, “A taper-fused microspherical laser source,” IEEE Photon. Technol. Lett. 20, 392–394 (2008).
[Crossref]

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. M. Stéphan, “Laser characteristics at 1535 nm and thermal effects of an er: Yb phosphate glass microchip pumped by ti: sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Ferrari, M.

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

Flores, C.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

François, A.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

Gao, M.

Garbuzov, D.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” J. Opt. Soc. Am B 24, 2454–2460 (2007).
[Crossref]

Gignac, W.J.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Giles, C.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Gomes, L.

L. Da Vila, L. Gomes, L. Tarelho, S. Ribeiro, and Y. Messadeq, “Mechanism of the Yb–Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93, 3873–3880 (2003).
[Crossref]

Hall, J. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

He, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotech. 6, 428–432 (2011).
[Crossref]

Heinrich, M.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref] [PubMed]

Hodaei, H.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref] [PubMed]

Inomata, K.

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

Jones, K.

M. Bray, T. Reid, K. Jones, and M. Poettcker, “Model to predict spectral shape of an hybrid 980nm & 1480nm pumped erbium doped fibre amplifier,” in “Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication” (Optical Society of America, 1999), p. WG4.

Kasumie, S.

Khajavikhan, M.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref] [PubMed]

Kim, S. K.

B.-H. Choi, H.-H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump,” IEEE Photon. Technol. Lett. 13, 109–111 (2001).
[Crossref]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotech. 6, 428–432 (2011).
[Crossref]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Koch, T. L.

T. L. Koch, Optical Fiber Telecommunications III, vol. 2 (Academic, 1997).

Koechner, W.

W. Koechner, Solid-state Laser Engineering, vol. 1 (Springer, 2013).

Kramer, J.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

Kudryashov, I.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” J. Opt. Soc. Am B 24, 2454–2460 (2007).
[Crossref]

Lee, J.

J. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11, 42–44 (1999).
[Crossref]

Lei, F.

Liertzer, M.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Liu, X.-F.

Long, G. L.

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

Long, G.-L.

Ma, R.-M.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Major, J.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Meldrum, A.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

Merkle, L. D.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” J. Opt. Soc. Am B 24, 2454–2460 (2007).
[Crossref]

Messadeq, Y.

L. Da Vila, L. Gomes, L. Tarelho, S. Ribeiro, and Y. Messadeq, “Mechanism of the Yb–Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93, 3873–3880 (2003).
[Crossref]

Min, B.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

Miri, M.-A.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref] [PubMed]

Monifi, F.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Monro, T. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

Myers, J. D.

R. Wu, J. D. Myers, M. J. Myers, and C. F. Rapp, “Fluorescence lifetime and 980nm pump energy transfer dynamics in erbium and ytterbium co-doped phosphate laser glasses,” in “High-Power Lasers and Applications,” (International Society for Optics and Photonics, 2003), pp. 11–17.

Myers, M. J.

R. Wu, J. D. Myers, M. J. Myers, and C. F. Rapp, “Fluorescence lifetime and 980nm pump energy transfer dynamics in erbium and ytterbium co-doped phosphate laser glasses,” in “High-Power Lasers and Applications,” (International Society for Optics and Photonics, 2003), pp. 11–17.

Nakamura, Y.

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

Nic Chormaic, S.

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308 (2017).
[Crossref] [PubMed]

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

Y. Wu, J. M. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF 4–BaF 2–NaF–AlF 3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

J. M. Ward, P. Féron, and S. Nic Chormaic, “A taper-fused microspherical laser source,” IEEE Photon. Technol. Lett. 20, 392–394 (2008).
[Crossref]

J. M. Ward, D. G. OShea, B. J. Shortt, and S. Nic Chormaic, “Optical bistability in er-yb codoped phosphate glass microspheres at room temperature,” J. Appl. Phys. 102, 023104 (2007).
[Crossref]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Niskanen, A.

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

Nori, F.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Nunzi-Conti, G.

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

Olsson, A. A.

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

OShea, D. G.

J. M. Ward, D. G. OShea, B. J. Shortt, and S. Nic Chormaic, “Optical bistability in er-yb codoped phosphate glass microspheres at room temperature,” J. Appl. Phys. 102, 023104 (2007).
[Crossref]

Özdemir, S.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

X.-F. Liu, F. Lei, M. Gao, X. Yang, C. Wang, Ş. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
[Crossref] [PubMed]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotech. 6, 428–432 (2011).
[Crossref]

Park, H.-H.

B.-H. Choi, H.-H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump,” IEEE Photon. Technol. Lett. 13, 109–111 (2001).
[Crossref]

Park, N.

J. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11, 42–44 (1999).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

R. Paschotta, “article on ’erbium-doped gain media’ in the encyclopedia of laser physics and technology,” https://www.rp-photonics.com/erbium_doped_gain_media.html . Accessed on 2017-05-08.

Pashkin, Y. A.

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

Pelli, S.

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

Peng, B.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Pleiss, T.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Poettcker, M.

M. Bray, T. Reid, K. Jones, and M. Poettcker, “Model to predict spectral shape of an hybrid 980nm & 1480nm pumped erbium doped fibre amplifier,” in “Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication” (Optical Society of America, 1999), p. WG4.

Pollak, T. M.

Presby, H.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Rapp, C. F.

R. Wu, J. D. Myers, M. J. Myers, and C. F. Rapp, “Fluorescence lifetime and 980nm pump energy transfer dynamics in erbium and ytterbium co-doped phosphate laser glasses,” in “High-Power Lasers and Applications,” (International Society for Optics and Photonics, 2003), pp. 11–17.

Reid, T.

M. Bray, T. Reid, K. Jones, and M. Poettcker, “Model to predict spectral shape of an hybrid 980nm & 1480nm pumped erbium doped fibre amplifier,” in “Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication” (Optical Society of America, 1999), p. WG4.

Reynolds, T.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

Ribeiro, S.

L. Da Vila, L. Gomes, L. Tarelho, S. Ribeiro, and Y. Messadeq, “Mechanism of the Yb–Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93, 3873–3880 (2003).
[Crossref]

Riesen, N.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

Righini, G. C.

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

Rotter, S.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Ryu, U.-C.

J. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11, 42–44 (1999).
[Crossref]

Setzler, S. D.

Shortt, B. J.

J. M. Ward, D. G. OShea, B. J. Shortt, and S. Nic Chormaic, “Optical bistability in er-yb codoped phosphate glass microspheres at room temperature,” J. Appl. Phys. 102, 023104 (2007).
[Crossref]

Simpson, J. R.

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Sinivasagam, K. D. V.

K. D. V. Sinivasagam, M. A. G. Abushagur, and F. Tumiran, “New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier,” IEICE Electron. Expresss 2, 154–158 (2005).
[Crossref]

Snell, K. J.

Spillane, S. M.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

Stéphan, G. M.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. M. Stéphan, “Laser characteristics at 1535 nm and thermal effects of an er: Yb phosphate glass microchip pumped by ti: sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Tarelho, L.

L. Da Vila, L. Gomes, L. Tarelho, S. Ribeiro, and Y. Messadeq, “Mechanism of the Yb–Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93, 3873–3880 (2003).
[Crossref]

Tench, R.

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Tsai, J.

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

Tumiran, F.

K. D. V. Sinivasagam, M. A. G. Abushagur, and F. Tumiran, “New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier,” IEICE Electron. Expresss 2, 154–158 (2005).
[Crossref]

Vahala, K. J.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

Wang, C.

Wang, Y.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Ward, J.

Ward, J. M.

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

Y. Wu, J. M. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF 4–BaF 2–NaF–AlF 3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

J. M. Ward, P. Féron, and S. Nic Chormaic, “A taper-fused microspherical laser source,” IEEE Photon. Technol. Lett. 20, 392–394 (2008).
[Crossref]

J. M. Ward, D. G. OShea, B. J. Shortt, and S. Nic Chormaic, “Optical bistability in er-yb codoped phosphate glass microspheres at room temperature,” J. Appl. Phys. 102, 023104 (2007).
[Crossref]

White, J. O.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” J. Opt. Soc. Am B 24, 2454–2460 (2007).
[Crossref]

Wiersig, J.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

Wong, Z. J.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Wu, R.

R. Wu, J. D. Myers, M. J. Myers, and C. F. Rapp, “Fluorescence lifetime and 980nm pump energy transfer dynamics in erbium and ytterbium co-doped phosphate laser glasses,” in “High-Power Lasers and Applications,” (International Society for Optics and Photonics, 2003), pp. 11–17.

Wu, Y.

Y. Wu, J. M. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF 4–BaF 2–NaF–AlF 3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

Xu, H.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. M. Stéphan, “Laser characteristics at 1535 nm and thermal effects of an er: Yb phosphate glass microchip pumped by ti: sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Xu, L.

Yamamoto, T.

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

Yang, L.

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308 (2017).
[Crossref] [PubMed]

X.-F. Liu, F. Lei, M. Gao, X. Yang, C. Wang, Ş. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotech. 6, 428–432 (2011).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

Yang, X.

Yang, Y.

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308 (2017).
[Crossref] [PubMed]

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

Yilmaz, H.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Young, Y. E.

Zhang, X.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Zhu, J.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotech. 6, 428–432 (2011).
[Crossref]

Appl. Phys. Lett. (2)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

Electron. Lett. (1)

J.-M. Delavaux, C. Flores, R. Tench, T. Pleiss, T. Cline, D. DiGiovanni, J. Federici, C. Giles, H. Presby, J. Major, and W.J. Gignac, “Hybrid Er-doped fibre amplifiers at 980–1480 nm for long distance optical communications,” Electron. Lett. 28, 1642–1643 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. M. Ward, P. Féron, and S. Nic Chormaic, “A taper-fused microspherical laser source,” IEEE Photon. Technol. Lett. 20, 392–394 (2008).
[Crossref]

B.-H. Choi, H.-H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump,” IEEE Photon. Technol. Lett. 13, 109–111 (2001).
[Crossref]

J. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11, 42–44 (1999).
[Crossref]

IEICE Electron. Expresss (1)

K. D. V. Sinivasagam, M. A. G. Abushagur, and F. Tumiran, “New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier,” IEICE Electron. Expresss 2, 154–158 (2005).
[Crossref]

J. Appl. Phys. (3)

Y. Wu, J. M. Ward, and S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF 4–BaF 2–NaF–AlF 3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[Crossref]

J. M. Ward, D. G. OShea, B. J. Shortt, and S. Nic Chormaic, “Optical bistability in er-yb codoped phosphate glass microspheres at room temperature,” J. Appl. Phys. 102, 023104 (2007).
[Crossref]

L. Da Vila, L. Gomes, L. Tarelho, S. Ribeiro, and Y. Messadeq, “Mechanism of the Yb–Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93, 3873–3880 (2003).
[Crossref]

J. Opt. Soc. Am B (1)

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” J. Opt. Soc. Am B 24, 2454–2460 (2007).
[Crossref]

Laser Photon. Rev. (2)

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photon. Rev. 11, 1600265 (2017).
[Crossref]

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Nature (2)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Single artificial-atom lasing,” Nature 449, 588–590 (2007).
[Crossref] [PubMed]

Nature Nanotech. (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotech. 6, 428–432 (2011).
[Crossref]

Opt. Commun. (1)

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. M. Stéphan, “Laser characteristics at 1535 nm and thermal effects of an er: Yb phosphate glass microchip pumped by ti: sapphire laser,” Opt. Commun. 203, 301–313 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A (1)

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. U.S.A 113, 6845–6850 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

Science (3)

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref] [PubMed]

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Other (7)

M. Bray, T. Reid, K. Jones, and M. Poettcker, “Model to predict spectral shape of an hybrid 980nm & 1480nm pumped erbium doped fibre amplifier,” in “Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication” (Optical Society of America, 1999), p. WG4.

T. L. Koch, Optical Fiber Telecommunications III, vol. 2 (Academic, 1997).

W. Koechner, Solid-state Laser Engineering, vol. 1 (Springer, 2013).

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

C. Arnaud, M. Boustimi, M. Brenci, P. Feron, M. Ferrari, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Microsphere laser in Er3+-doped oxide glasses,” in “5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications” (International Society for Optics and Photonics, 2004), pp. 315–320.

R. Wu, J. D. Myers, M. J. Myers, and C. F. Rapp, “Fluorescence lifetime and 980nm pump energy transfer dynamics in erbium and ytterbium co-doped phosphate laser glasses,” in “High-Power Lasers and Applications,” (International Society for Optics and Photonics, 2003), pp. 11–17.

R. Paschotta, “article on ’erbium-doped gain media’ in the encyclopedia of laser physics and technology,” https://www.rp-photonics.com/erbium_doped_gain_media.html . Accessed on 2017-05-08.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for pumping of a microsphere laser. WDM: wavelength division multiplexer, OSA: optical spectrum analyzer.
Fig. 2
Fig. 2 Output spectra of the Yb:Er codoped microsphere laser pumped by (a) a 1550 nm laser and (b) a 980 nm laser. From bottom to top the power of the 1550 nm laser launched into the coupling fiber is 0.8, 2.1, 7.7, 17.5, 27, 35.4 mW and the power of the 980 nm laser is 1, 6.9, 13.6, 34.8, 65.1, and 72.2 mW. The 980 nm pump emissions tend to shift towards the blue for higher pump powers.
Fig. 3
Fig. 3 Output of the Yb:Er co-doped microsphere laser pumped by the 1550 nm laser and the 980 nm laser simultaneously. (a) Total output power as the 980 nm pump is increased from 0 to 76.7 mW. For convenience, the total output power of sample B is amplified 3 times. From I to VIII, the 1550 nm power launched into the coupling fiber is 0, 1.4, 3.2, 6.8, 7.9, 14, 21.7, and 34.9 mW for sample A and 0, 1.2, 2.4, 7.2, 9.6, 12, 14.4, and 18.2 mW for sample B. (b) Output spectra of sample A as the 980 nm pump power is increased. From bottom to top, the 980 nm power is 0, 7.2, 23.8, 36.9, 58.4, and 71.7 mW and the 1550 nm power is 7.9 mW, corresponding to (a) Plot V.
Fig. 4
Fig. 4 Output of the Er-doped microsphere laser pumped at 1550 nm and 980 nm simultaneously. (a) As in Fig. 3, the total output power of the WGM laser with respect to different pump powers. From plot I to plot VIII, from bottom to top, the 1550 nm power launched into the coupling fiber is 0, 1.7, 4.3, 8.65, 17.3, 34.6, 52 and 95 mW for sample C. For sample D, the 1550 nm power is 0, 1.2, 5.8, 11.5, 34.5, 57.5, 69 and 80.5 mW. Sample C and D are fabricated by using the same method and have similar sizes. (b) Output spectra of sample C when increasing the 980 nm pump power, corresponding to the blue (open circles) line in (a) plot V. From bottom to top, the 980 nm power is to 0, 7.2, 23.8, 36.9, 58.4, 71.7 mW, and the 1550 nm power is 7.9 mW.
Fig. 5
Fig. 5 Output of the Yb:Er co-doped microsphere laser pumped at 1440 nm and 980 nm simultaneously. (a) As in Fig. 3, the total output power of the WGM laser with respect different pump powers. From I to VIII, the 1440 nm pump power is 0, 2.3, 9.3, 30.3, 47.5, 62.8, 80 and 97.7 mW for sample A; For sample B, the 1440 nm power is 0, 7.5, 17.1, 26.1, 36.5, 47.7, 58.1 and 63.3 mW, respectively. For clarity, the total output power for sample B is amplified 5 times. (b) The output spectra of sample A when increasing the 980 nm pump power, corresponding to the blue (open circles) line in (a) plot V. From bottom to top, the 980 nm power is 0, 6.4, 17.4, 32.9, 57.4, 76.5 mW, and 1440 nm power is 47.5 mW.
Fig. 6
Fig. 6 Illustration of pump induced lasing suppression in a Yb:Er co-doped microlaser. (a) Pumping via a strong 1550 nm laser; (b) Co-pumping via a strong 1550 nm laser and a weak 980 nm laser; (c) Co-pumping via a strong 1550 nm laser and a strong 980 nm laser.
Fig. 7
Fig. 7 Results from the theoretical model. (a) and (b) show the output powers of Yb:Er co-doped and pure Er laser pumped by 980 nm and 1550 nm lasers, respectively. The three lines stand for different 1550 nm pump powers: 0 (blue dashed), 400 μW (red solid) and 800 μW (black dot). (c) shows the output powers of Yb:Er codoped laser pumped by 980 nm and 1440 nm lasers. The power of 1440 nm pump is set at 0 (blue dashed), 400 μW (red solid) and 800 μW (black dot), respectively. (d)–(f) depict some parameters of the Yb:Er codoped laser evolve with the 980 nm pump, and the 1550 nm pump power is fixed at 800 μW. (d) and (e) stand for the intracavity power and gain coefficient of 980 nm pump (blue dashed), 1550 nm pump (red dot) and 1600 nm laser (black solid), respectively. (f) shows the population ratios of erbium ions: N1: blue dashed, N2: red dot, and N3: black solid.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d a p 1 d t = - ( κ p 1 0 + κ p 1 ex - g p 1 2 ) a p 1 - κ p 1 ex a p 1 in ,
d a p 2 d t = - ( κ p 2 0 + κ p 2 ex - g p 2 2 ) a p 2 - κ p 2 ex a p 2 in ,
d a L d t = - ( κ p L 0 + κ p L ex - g L 2 ) a L + ξ ,
g p 1 = c n p 1 ( N 3 σ p 1 e - N 1 σ p 1 a ) ,
g p 2 = c n p 2 ( N 2 σ p 2 e - N 1 σ p 2 a ) ,
g p L = c n L ( N 2 σ L e - N 1 σ L a ) ,
d N 3 d t = - N 3 τ 32 + C p 1 ( N 1 σ p 1 a - N 3 σ p 1 e ) | a p 1 | 2 ,
d N 2 d t = N 3 τ 32 - N 2 τ 21 + C p 2 ( N 1 σ p 2 a - N 2 σ p 2 e ) | a p 2 | 2 + C L ( N 1 σ L a - N 2 σ L e ) | a L | 2 ,

Metrics