Abstract

Extraordinary transmission has been recently measured in a parallel plate waveguide (PPWG) through a metal strip with a patterned 1-D periodic array of circular holes, the metal strip being embedded inside the PPWG. Wood’s anomaly and the extraordinary transmission peak (EOT) were detected for transverse electric (TE) mode excitation at frequencies higher than those found for TEM mode excitation. In this paper we provide an explanation for this frequency shift by decomposing the problem of a TE mode impinging on the 1-D array of holes into two problems of plane waves impinging obliquely on 2-D periodic arrays of holes. By then solving the integral equation for the electric field on the surface of the holes, the origin of the frequency shift is proved both mathematically and physically in terms of the symmetries present in the system.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Surface impedance model for extraordinary transmission in 1D metallic and dielectric screens

V. Delgado and R. Marqués
Opt. Express 19(25) 25290-25297 (2011)

Analytical theory of extraordinary optical transmission through realistic metallic screens

V. Delgado, R. Marqués, and L. Jelinek
Opt. Express 18(7) 6506-6515 (2010)

Extraordinary transmission through dielectric screens with 1D sub-wavelength metallic inclusions

V. Delgado, R. Marqués, and L. Jelinek
Opt. Express 19(14) 13612-13617 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  2. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [Crossref]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [Crossref]
  4. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500 (2004).
    [Crossref] [PubMed]
  5. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [Crossref] [PubMed]
  6. F. J. García De Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95233901 (2005),
    [Crossref]
  7. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [Crossref]
  8. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref] [PubMed]
  9. F. J. Garcia De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [Crossref]
  10. J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99, 203905 (2007).
    [Crossref]
  11. M. Camacho, R. R. Boix, and F. Medina, “Comparative study between resonant transmission and extraordinary transmission in truncated periodic arrays of slots,” in “2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO),” (IEEE, 2017), pp. 257–259.
  12. Y. Pang, A. Hone, P. So, and R. Gordon, “Total optical transmission through a small hole in a metal waveguide screen,” Opt. Express 17, 4433–4441 (2009).
    [Crossref] [PubMed]
  13. F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
    [Crossref]
  14. F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56, 3108–3120 (2008).
    [Crossref]
  15. K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24, 28221 (2016).
    [Crossref] [PubMed]
  16. D. M. Pozar, Microwave Engineering (John Wiley & Sons Inc, 2005).
  17. M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
    [Crossref] [PubMed]
  18. M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
    [Crossref]
  19. R. F. Harrington, Field Computation by Moment Methods (Wiley-IEEE, 1993).
    [Crossref]

2017 (1)

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

2016 (2)

K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24, 28221 (2016).
[Crossref] [PubMed]

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref] [PubMed]

2010 (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

2009 (2)

Y. Pang, A. Hone, P. So, and R. Gordon, “Total optical transmission through a small hole in a metal waveguide screen,” Opt. Express 17, 4433–4441 (2009).
[Crossref] [PubMed]

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
[Crossref]

2008 (1)

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56, 3108–3120 (2008).
[Crossref]

2007 (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

F. J. Garcia De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99, 203905 (2007).
[Crossref]

2005 (1)

F. J. García De Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95233901 (2005),
[Crossref]

2004 (2)

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]

Backus, S.

Beruete, M.

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]

Boix, R. R.

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref] [PubMed]

M. Camacho, R. R. Boix, and F. Medina, “Comparative study between resonant transmission and extraordinary transmission in truncated periodic arrays of slots,” in “2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO),” (IEEE, 2017), pp. 257–259.

Bravo-Abad, J.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99, 203905 (2007).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500 (2004).
[Crossref] [PubMed]

Camacho, M.

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref] [PubMed]

M. Camacho, R. R. Boix, and F. Medina, “Comparative study between resonant transmission and extraordinary transmission in truncated periodic arrays of slots,” in “2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO),” (IEEE, 2017), pp. 257–259.

Campillo, I.

Dolado, J. S.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Fernández-Domínguez, A. I.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99, 203905 (2007).
[Crossref]

Garcia De Abajo, F. J.

F. J. Garcia De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

García De Abajo, F. J.

F. J. García De Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95233901 (2005),
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99, 203905 (2007).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500 (2004).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

Gordon, R.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

Harrington, R. F.

R. F. Harrington, Field Computation by Moment Methods (Wiley-IEEE, 1993).
[Crossref]

Hibbins, A. P.

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

Hone, A.

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Lu, P. Y.

Marqués, R.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
[Crossref]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56, 3108–3120 (2008).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Martín-Moreno, L.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99, 203905 (2007).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500 (2004).
[Crossref] [PubMed]

Medina, F.

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref] [PubMed]

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
[Crossref]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56, 3108–3120 (2008).
[Crossref]

M. Camacho, R. R. Boix, and F. Medina, “Comparative study between resonant transmission and extraordinary transmission in truncated periodic arrays of slots,” in “2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO),” (IEEE, 2017), pp. 257–259.

Mendis, R.

Mesa, F.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
[Crossref]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56, 3108–3120 (2008).
[Crossref]

Mittleman, D. M.

Montejo-Garai, J. R.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
[Crossref]

Pang, Y.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (John Wiley & Sons Inc, 2005).

Rebollar, J. M.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
[Crossref]

Reichel, K. S.

Ruiz-Cruz, J. A.

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
[Crossref]

Sáenz, J. J.

F. J. García De Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95233901 (2005),
[Crossref]

Sambles, J. R.

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

So, P.

Sorolla, M.

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Appl. Phys. Lett. (1)

F. Medina, J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95, 071102 (2009).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56, 3108–3120 (2008).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

Phys. Rev. E (1)

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99, 203905 (2007).
[Crossref]

F. J. García De Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95233901 (2005),
[Crossref]

Rev. Mod. Phys. (2)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

F. J. Garcia De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Other (3)

M. Camacho, R. R. Boix, and F. Medina, “Comparative study between resonant transmission and extraordinary transmission in truncated periodic arrays of slots,” in “2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO),” (IEEE, 2017), pp. 257–259.

D. M. Pozar, Microwave Engineering (John Wiley & Sons Inc, 2005).

R. F. Harrington, Field Computation by Moment Methods (Wiley-IEEE, 1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Perspective view of a parallel plate waveguide. The two plates are connected through a negligible thickness PEC strip perforated with an infinite 1-D periodic array of slots. A zoomed view of the hole array with the definition of the geometry parameters is also shown on the bottom-left of the figure.
Fig. 2
Fig. 2 Perspective view of part of the two dimensional periodic array of holes perforated into a negligible thickness PEC screen. The array is illuminated by an obliquely incident plane wave along the direction given by the spherical angular coordinates (ϕinc, θinc). A zoomed view of the hole array with the definition of the geometry parameters is also shown.
Fig. 3
Fig. 3 Transmission spectra of a plane wave impinging on a 2-D array of rectangular slots in a PEC screen. Two polarizations TMz (a) and TEz (b) are considered, and different angles of incidence (θinc). In both cases, the direction of the incident electric field is contained in the xz plane so as to excite the fields in the slots. The dimensions of the unit cell were chosen to be ls/a = 0.4, ws/a = 0.05 and a = b.
Fig. 4
Fig. 4 Transmission spectra obtained when the TE1 mode of the PPWG of Fig. 1 impinges on the 1-D array of rectangular slots. Our results (MoM) are compared with HFSS results. The dimensions of the unit cell were chosen to be ws/a = 0.05 and a = b.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E 1 PPWG = E 0 PPWG ( e - j k 1 , - - e - j k 1 , + ) x ^
θ 0 = arctan ( π k 0 2 b 2 - π 2 )
E i = E 0 e j ( k x 0 x + k y 0 y + k z 0 z ) u ^ = E 0 e - j k i r u ^
J as + 0 a 0 b G ¯ M per ( x - x , y - y ) E t sc ( x , y , z = 0 ) d x d y = 0 ( x , y ) δ 00
G ¯ M per ( x , y ) = m = - + n = - + G ¯ M ( x - m a , y - n b ) e j ( k x 0 m a + k y 0 n b ) .
G ¯ M ( x , y ) = ( ( k 0 2 + 2 y 2 ) g ( x , y ) - 2 g ( x , y ) x y - 2 g ( x , y ) x y ( k 0 2 + 2 x 2 ) g ( x , y ) )
g ( x , y ) = - je - j k 0 x 2 + y 2 π k 0 Z 0 x 2 + y 2
E t sc ( x , y , z = 0 ) j = 1 N b f j b j ( x , y ) ( x , y ) δ 00
j = 1 N b Γ i j f j = C i ( i = 1 , , N b )
Γ i j = a b m , n = - b ˜ i * ( k x m , k y n ) [ G ¯ ˜ M ( k x = k x m , k y = k y n ) b ˜ j ( k x m , k y n ) ]
G ¯ ˜ M ( k x = k x m , k y = k y n ) = - 2 k 0 Z 0 k 0 2 - k x m 2 - k y n 2 × ( k 0 2 - k y n 2 k x m k y n k x m k y n k 0 2 - k x m 2 )
C i = - ( 0 a 0 b b i ( x , y ) e - j ( k x 0 x + k y 0 y ) d x d y ) * J a s = - a b b ˜ i * ( k x 0 , k y 0 ) J as .
k 0 2 - k x m 2 - k y n 2 = 0 k x m 2 + k y n 2 = k 0 2

Metrics