Abstract

We develop the theory of all-dielectric absorbers based on temporal coupled mode theory (TCMT), with parameters extracted from eigenfrequency simulations. An infinite square array of cylindrical resonators embedded in air is investigated, and we find that it supports two eigenmodes of opposite symmetry that are each responsible for half of the total absorption. The even and odd eigenmodes are found to be the hybrid electric (EH111) and hybrid magnetic (HE111) waveguide modes of a dielectric wire of circular cross section, respectively. The geometry of the cylindrical array is shown to be useful for individual tuning of the radiative loss rates of the eigenmodes, thus permitting frequency degeneracy. Further, by specifying the resonators’ loss tangent, the material loss rate can be made to equal the radiative loss rate, thus achieving a state of degenerate critical coupling and perfect absorption. Our results are supported by S-parameter simulations, and agree well with waveguide theory.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental realization of a terahertz all-dielectric metasurface absorber

Xinyu Liu, Kebin Fan, Ilya V. Shadrivov, and Willie J. Padilla
Opt. Express 25(1) 191-201 (2017)

Role of loss in all-dielectric metasurfaces

Andrew Cardin, Kebin Fan, and Willie Padilla
Opt. Express 26(13) 17669-17679 (2018)

All-dielectric metasurface absorbers for uncooled terahertz imaging

Kebin Fan, Jonathan Y. Suen, Xinyu Liu, and Willie J. Padilla
Optica 4(6) 601-604 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  2. Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for Perfect Absorption (Springer, 2016).
    [Crossref]
  3. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
    [Crossref]
  4. K. Fan, J. Suen, X. Wu, and W. J. Padilla, “Graphene metamaterial modulator for free-space thermal radiation,” Opt. Express 24 (22), 25189–25201 (2016).
    [Crossref] [PubMed]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10 (7), 2342–2348 (2010).
    [Crossref] [PubMed]
  6. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34 (19), 3012–3014 (2009).
    [Crossref] [PubMed]
  7. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  8. C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
    [Crossref]
  9. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
    [Crossref]
  10. M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
    [Crossref]
  11. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref] [PubMed]
  12. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
    [Crossref]
  13. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  14. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.
  15. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
    [Crossref]
  16. J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104, 251110 (2014).
    [Crossref]
  17. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84 (24), 4905–4907 (2004).
    [Crossref]
  18. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
    [Crossref]
  19. C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
    [Crossref] [PubMed]
  20. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
    [Crossref] [PubMed]
  21. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – a review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput-Aid. Eng. 4(3), 230–247 (1994).
  22. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
    [Crossref]
  23. D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
    [Crossref]
  24. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51(5), 491–498 (1961).
    [Crossref]
  25. P. Guillon and Y. Garault, “Accurate resonant frequencies of dielectric resonators,” IEEE Trans. Microw. Theory Tech. 25(11), 916–922 (1977).
    [Crossref]
  26. P. T. Bowen and D. R. Smith, “Coupled-mode theory for film-coupled plasmonic nanocubes,” Phys. Rev. B 90, 195402 (2014).
    [Crossref]
  27. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88, 053819 (2013).
    [Crossref]
  28. D. A. Powell, “Interference between the modes of an all-Dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
    [Crossref]

2017 (5)

2016 (2)

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

K. Fan, J. Suen, X. Wu, and W. J. Padilla, “Graphene metamaterial modulator for free-space thermal radiation,” Opt. Express 24 (22), 25189–25201 (2016).
[Crossref] [PubMed]

2015 (3)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

2014 (4)

P. T. Bowen and D. R. Smith, “Coupled-mode theory for film-coupled plasmonic nanocubes,” Phys. Rev. B 90, 195402 (2014).
[Crossref]

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104, 251110 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

2013 (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88, 053819 (2013).
[Crossref]

2012 (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

2011 (2)

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10 (7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

2004 (2)

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84 (24), 4905–4907 (2004).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

2001 (1)

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

1994 (1)

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – a review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput-Aid. Eng. 4(3), 230–247 (1994).

1977 (1)

P. Guillon and Y. Garault, “Accurate resonant frequencies of dielectric resonators,” IEEE Trans. Microw. Theory Tech. 25(11), 916–922 (1977).
[Crossref]

1961 (1)

Bhartia, P.

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – a review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput-Aid. Eng. 4(3), 230–247 (1994).

Bingham, C.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Bowen, P. T.

P. T. Bowen and D. R. Smith, “Coupled-mode theory for film-coupled plasmonic nanocubes,” Phys. Rev. B 90, 195402 (2014).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Brückl, H.

Cai, D.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Chen, J.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Chen, Z.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Cole, M. A.

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

Dai, N.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

DeMeo, D.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fan, K.

Fan, S.

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104, 251110 (2014).
[Crossref]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84 (24), 4905–4907 (2004).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Garault, Y.

P. Guillon and Y. Garault, “Accurate resonant frequencies of dielectric resonators,” IEEE Trans. Microw. Theory Tech. 25(11), 916–922 (1977).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10 (7), 2342–2348 (2010).
[Crossref] [PubMed]

Guillon, P.

P. Guillon and Y. Garault, “Accurate resonant frequencies of dielectric resonators,” IEEE Trans. Microw. Theory Tech. 25(11), 916–922 (1977).
[Crossref]

Hangyo, M.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

Hao, J.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.

He, Q.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10 (7), 2342–2348 (2010).
[Crossref] [PubMed]

Hopkins, B.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88, 053819 (2013).
[Crossref]

Huang, Y.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Ji, W.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

Kim, K. W.

Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for Perfect Absorption (Springer, 2016).
[Crossref]

Kivshar, Y. S.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88, 053819 (2013).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Latham, N. P.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Lee, Y. P.

Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for Perfect Absorption (Springer, 2016).
[Crossref]

Li, X.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10 (7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, S.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Liu, V.

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104, 251110 (2014).
[Crossref]

Liu, X.

Ma, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Maier, T.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10 (7), 2342–2348 (2010).
[Crossref] [PubMed]

Miao, Z.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

Miroshnichenko, A. E.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88, 053819 (2013).
[Crossref]

Mongia, R. K.

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – a review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput-Aid. Eng. 4(3), 230–247 (1994).

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Morikawa, O.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

Nashima, S.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

Neshev, D. N.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Padilla, W.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Padilla, W. J.

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Piper, J. R.

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104, 251110 (2014).
[Crossref]

Poddubny, A. N.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88, 053819 (2013).
[Crossref]

Powell, D. A.

D. A. Powell, “Interference between the modes of an all-Dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
[Crossref]

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

Qiu, M.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Qu, C.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Rhee, J. Y.

Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for Perfect Absorption (Springer, 2016).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

Shadrivov, I. V.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

Shemelya, C.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

P. T. Bowen and D. R. Smith, “Coupled-mode theory for film-coupled plasmonic nanocubes,” Phys. Rev. B 90, 195402 (2014).
[Crossref]

Snitzer, E.

Staude, I.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Suen, J.

Suen, J. Y.

Suh, W.

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84 (24), 4905–4907 (2004).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Sun, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Takata, K.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

Vandervelde, T. E.

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Wang, W.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10 (7), 2342–2348 (2010).
[Crossref] [PubMed]

Wu, C.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

Wu, X.

K. Fan, J. Suen, X. Wu, and W. J. Padilla, “Graphene metamaterial modulator for free-space thermal radiation,” Opt. Express 24 (22), 25189–25201 (2016).
[Crossref] [PubMed]

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

Xiao, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Yoo, Y. J.

Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for Perfect Absorption (Springer, 2016).
[Crossref]

Zhou, L.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Adv. Opt. Mater. (1)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Appl. Phys. Lett. (4)

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

C. Shemelya, D. DeMeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104, 201113 (2014).
[Crossref]

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104, 251110 (2014).
[Crossref]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84 (24), 4905–4907 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. Guillon and Y. Garault, “Accurate resonant frequencies of dielectric resonators,” IEEE Trans. Microw. Theory Tech. 25(11), 916–922 (1977).
[Crossref]

Int. J. RF Microw. Comput-Aid. Eng. (1)

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – a review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput-Aid. Eng. 4(3), 230–247 (1994).

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10 (7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

Nat. Photonics (2)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88, 053819 (2013).
[Crossref]

Phys. Rev. Appl. (1)

D. A. Powell, “Interference between the modes of an all-Dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
[Crossref]

Phys. Rev. B (2)

P. T. Bowen and D. R. Smith, “Coupled-mode theory for film-coupled plasmonic nanocubes,” Phys. Rev. B 90, 195402 (2014).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
[Crossref]

Phys. Rev. Lett. (1)

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115, 235503 (2015).
[Crossref] [PubMed]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Other (2)

Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for Perfect Absorption (Springer, 2016).
[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of one unit cell of the all-dielectric absorber with a single input, where r is the cylindrical radius, h is the height, and p is the period of the square array. The mirror plane (gray area) is at z=0. The single input from one port can be represented as a combination of even (b) and odd (c) eigenexcitations. Each eigenexcitation contains half of the power compared to the single input case, and two equal amplitude waves at each port, which are symmetric and anti-symmetric (with respect to the mirror plane) for the even and odd eigenexcitation, respectively.
Fig. 2
Fig. 2 Absorption for 1-port excitation (red curve), even eigenexcitation (black curve) and odd eigenexcitation (solid gray curve) for cylindrical resonators with radii of r=45µm (a), r=60µm (b) and r=70µm (c). The total absorptivity due to both even and odd modes, AΣ, is plotted as open blue circles. The dash horizontal line indicates 50% absorption.
Fig. 3
Fig. 3 Electric field (black arrows) and transverse magnetic field H y (colormap) in the vertical middle cut plane (y=0) of a cylinder for (a) even eigenexcitation, (b) odd eigenexcitation, (c) sum of fields from (a) and (b), and (d) one input excitation, all at ω=1.048THz.
Fig. 4
Fig. 4 Comparison of absorptivity calculated from Eq. (1) and eigenfrequency simulation (red curve) and by S-parameter simulation (open blue circles). We also plot from Eq. (1)Aeven (black curve) and Aodd (gray curve). The dash horizontal line indicates 50% absorptivity.
Fig. 5
Fig. 5 Effect of (a) height, (b) radius and (c) period on total absorption A(ω), plotted as a colormap. The circles and triangles are the resonant frequencies of the EH111 and HE111 modes, respectively, determined by eigenfrequency simulations. The solid black and gray lines are the analytical resonant frequencies of EH111 and HE111 modes, respectively. The vertical dash black lines indicate the ideal tan δ value for critical coupling.
Fig. 6
Fig. 6 Effect of (a) height, (b) radius and (c) period on γ (solid curves) and δ (dashed curves) of the EH111 mode (red curves) and HE111 modes (blue curves). The vertical dashed lines denote (a) h = 50µm, (b) r = 60µm, and (c) p = 210µm. The shaded gray area shows the waveguide cutoff region for the EH111 mode.
Fig. 7
Fig. 7 (a) Dependence of R (green triangles), T (blue squares), and A (red circles) on loss tangent (bottom axis). The solid red curve shows the total absorptivity from Eq. (2) at ω = ω0,1 = ω0,2 as a function of the loss ratio = δ/γ (top axis). (b) Dependence of γ (solid curves) and δ (dashed curves) for both EH111 (red curves) and HE111 (blue curves) modes as a function of loss tangent. The vertical dashed black line indicates the nearly degenerate critical coupling.

Tables (1)

Tables Icon

Table 1 Analytical and Simulated Lorentz Parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = A e v e n + A o d d = 2 γ 1 δ 1 ( ω ω 0 , 1 ) 2 + ( γ 1 + δ 1 ) 2 + 2 γ 2 δ 2 ( ω ω 0 , 2 ) 2 + ( γ 2 + δ 2 ) 2 ,
A ( ω 0 ) 49.0 % for 3 4 γ 4 3 .
d a d t = i [ Ω 0 i ( Γ + Δ ) ] a + K a + D T s i n
s o u t = C s i n + D a
a 1 = γ 1 s 0 i ( ω ω 0 , 1 ) + ( γ 1 + δ 1 )
P d , 1 = 2 δ 1 | a 1 | 2 = 2 δ 1 γ 1 | s 0 | 2 ( ω ω 0 , 1 ) 2 + ( γ 1 + δ 1 ) 2
A e v e n = P d , 1 | s 0 | 2 / 2 1 2 = 2 δ 1 γ 1 ( ω ω 0 , 1 ) 2 + ( γ 1 + δ 1 ) 2
A ( ω ) = A e v e n + A o d d = 2 γ 1 δ 1 ( ω ω 0 , 1 ) 2 + ( γ 1 + δ 1 ) 2 + 2 γ 2 δ 2 ( ω ω 0 , 2 ) 2 + ( γ 2 + δ 2 ) 2
J 1 , 1 ( k r r ) = 0
tan ( k z h 2 ) = k z 0 k z
[ J 1 ( u ) u J 1 ( u ) + K 1 ( v ) v K 1 ( v ) ] [ k 0 2 ϵ 1 r J 1 ( u ) u J 1 ( u ) + k 0 2 K 1 ( v ) v K 1 ( v ) ] = k z 2 ( 1 u 2 + 1 v 2 ) 2
k z h = π

Metrics