Abstract

Optomechanical systems based on nanophotonics are advancing the field of precision motion measurement, quantum control and nanomechanical sensing. In this context III–V semiconductors offer original assets like the heteroepitaxial growth of optimized metamaterials for photon/phonon interactions. GaAs has already demonstrated high performances in optomechanics but suffers from two photon absorption (TPA) at the telecom wavelength, which can limit the cooperativity. Here, we investigate TPA-free III–V semiconductor materials for optomechanics applications: GaAs lattice-matched In0.5Ga0.5P and Al0.4Ga0.6As. We report on the fabrication and optical characterization of high frequency (500–700 MHz) optomechanical disks made out of these two materials, demonstrating high optical and mechanical Q in ambient conditions. Finally we achieve operating these new devices as laser-sustained optomechanical self-oscillators, and draw a first comparative study with existing GaAs systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoelastic coupling in gallium arsenide optomechanical disk resonators

Christopher Baker, William Hease, Dac-Trung Nguyen, Alessio Andronico, Sara Ducci, Giuseppe Leo, and Ivan Favero
Opt. Express 22(12) 14072-14086 (2014)

Origin of optical losses in gallium arsenide disk whispering gallery resonators

David Parrain, Christophe Baker, Guillaume Wang, Biswarup Guha, Eduardo Gil Santos, Aristide Lemaitre, Pascale Senellart, Giuseppe Leo, Sara Ducci, and Ivan Favero
Opt. Express 23(15) 19656-19672 (2015)

Optomechanical trampoline resonators

Dustin Kleckner, Brian Pepper, Evan Jeffrey, Petro Sonin, Susanna M. Thon, and Dirk Bouwmeester
Opt. Express 19(20) 19708-19716 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photon. 3(4), 201–205 (2009).
    [Crossref]
  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
    [Crossref]
  3. L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
    [Crossref]
  4. S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
    [Crossref]
  5. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013).
    [Crossref] [PubMed]
  6. W. Yu, W.C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
    [Crossref] [PubMed]
  7. E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
    [Crossref] [PubMed]
  8. J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
    [Crossref] [PubMed]
  9. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
    [Crossref] [PubMed]
  10. C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
    [Crossref] [PubMed]
  11. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
    [Crossref] [PubMed]
  12. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
    [Crossref] [PubMed]
  13. C. Baker, W. Hease, D.T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072–14086 (2014).
    [Crossref] [PubMed]
  14. B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gerard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106,” Optica 4(2), 218–221 (2017).
    [Crossref]
  15. B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaître, “Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,” Phys. Rev. Lett. 115(26), 267402 (2015).
    [Crossref]
  16. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14(2), 817–831 (2006).
    [Crossref] [PubMed]
  17. D. Parrain, C. Baker, G. Wang, B. Guha, E. G. Santos, A. Lemaître, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015).
    [Crossref] [PubMed]
  18. S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 1108 (2009).
    [Crossref]
  19. S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
    [Crossref] [PubMed]
  20. G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
    [Crossref]
  21. S. Mariani, A. Andronico, O. Mauguin, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “AlGaAs microdisk cavities for second-harmonic generation,” Opt. Lett. 38(19), 3965–3968 (2013).
    [Crossref] [PubMed]
  22. S. Mariani, “Three-wave mixing in semiconductor whispering gallery mode microcavities,” PhD thesis Université Paris Diderot, (2014).
  23. L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
    [Crossref]
  24. J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).
  25. L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
    [Crossref]
  26. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
    [Crossref] [PubMed]
  27. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  28. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  29. E. Weidner, S. Combrié, A. de Rossi, N-V-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
    [Crossref]
  30. J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
    [Crossref]
  31. F. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 µ m,” Appl. Phys. Lett. 77(11), 1614–1616 (2000).
    [Crossref]
  32. S. Adachi, “GaAs, AlAs, and Alx Ga1−x As material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
    [Crossref]
  33. Ioffe Institute, “Physical Properties of Semiconductor”, http://www.ioffe.ru/SVA/NSM/Semicond/index.html
  34. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC handbook of chemistry and physics. CRC Press, 2012.
  35. S. Adachi, Physical properties of III–V semiconductor compounds, John Wiley & Sons, 1992.
    [Crossref]
  36. M. Gandomkar and V. Ahmadi, “Thermo-optical switching enhanced with second harmonic generation in microring resonators,” Opt. Lett. 36(19), 3825–3827 (2011).
    [Crossref] [PubMed]
  37. S. Sokolov, J. Lian, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the linear thermo-optical coefficient of Ga0.51In0.49P using photonic crystal nanocavities,” Appl. Opt. 56(11), 3219–3222 (2017).
    [Crossref] [PubMed]
  38. C. Baker, On-chip nano-optomechanical whispering gallery resonators, PhD thesis, Université Paris Diderot, 2013.

2017 (2)

2016 (1)

W. Yu, W.C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

2015 (3)

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaître, “Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,” Phys. Rev. Lett. 115(26), 267402 (2015).
[Crossref]

D. Parrain, C. Baker, G. Wang, B. Guha, E. G. Santos, A. Lemaître, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015).
[Crossref] [PubMed]

2014 (4)

C. Baker, W. Hease, D.T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072–14086 (2014).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (3)

M. Gandomkar and V. Ahmadi, “Thermo-optical switching enhanced with second harmonic generation in microring resonators,” Opt. Lett. 36(19), 3825–3827 (2011).
[Crossref] [PubMed]

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

2010 (2)

L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

2009 (5)

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
[Crossref]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photon. 3(4), 201–205 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 1108 (2009).
[Crossref]

2008 (1)

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

2007 (1)

E. Weidner, S. Combrié, A. de Rossi, N-V-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

2006 (1)

2005 (1)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

2004 (2)

2000 (1)

F. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 µ m,” Appl. Phys. Lett. 77(11), 1614–1616 (2000).
[Crossref]

1985 (1)

S. Adachi, “GaAs, AlAs, and Alx Ga1−x As material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

1982 (1)

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[Crossref]

Adachi, S.

S. Adachi, “GaAs, AlAs, and Alx Ga1−x As material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

S. Adachi, Physical properties of III–V semiconductor compounds, John Wiley & Sons, 1992.
[Crossref]

Ahmadi, V.

Alaie, S.

Allman, M.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Almeida, V. R.

Amo, A.

Andronico, A.

Aspelmeyer, M.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

Baker, C.

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

D. Parrain, C. Baker, G. Wang, B. Guha, E. G. Santos, A. Lemaître, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015).
[Crossref] [PubMed]

C. Baker, W. Hease, D.T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072–14086 (2014).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).

C. Baker, On-chip nano-optomechanical whispering gallery resonators, PhD thesis, Université Paris Diderot, 2013.

Berkovitz, V.

Blakemore, J.

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[Crossref]

Borselli, M.

Bruno, T. J.

W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC handbook of chemistry and physics. CRC Press, 2012.

Cadiz, F.

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

Carmon, T.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Cassette, S.

E. Weidner, S. Combrié, A. de Rossi, N-V-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Chan, J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Cicak, K.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Cocorullo, G.

F. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 µ m,” Appl. Phys. Lett. 77(11), 1614–1616 (2000).
[Crossref]

Cole, G. D.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Colman, P.

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 1108 (2009).
[Crossref]

Combrié, S.

B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gerard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106,” Optica 4(2), 218–221 (2017).
[Crossref]

S. Sokolov, J. Lian, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the linear thermo-optical coefficient of Ga0.51In0.49P using photonic crystal nanocavities,” Appl. Opt. 56(11), 3219–3222 (2017).
[Crossref] [PubMed]

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 1108 (2009).
[Crossref]

E. Weidner, S. Combrié, A. de Rossi, N-V-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

de Rossi, A.

E. Weidner, S. Combrié, A. de Rossi, N-V-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Della Corte, F.

F. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 µ m,” Appl. Phys. Lett. 77(11), 1614–1616 (2000).
[Crossref]

Ding, J. C. L.

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).

Ding, L.

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
[Crossref]

Donner, T.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Ducci, S.

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

D. Parrain, C. Baker, G. Wang, B. Guha, E. G. Santos, A. Lemaître, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015).
[Crossref] [PubMed]

C. Baker, W. Hease, D.T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072–14086 (2014).
[Crossref] [PubMed]

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

S. Mariani, A. Andronico, O. Mauguin, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “AlGaAs microdisk cavities for second-harmonic generation,” Opt. Lett. 38(19), 3965–3968 (2013).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).

Eichenfield, M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

Fainstein, A.

B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaître, “Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,” Phys. Rev. Lett. 115(26), 267402 (2015).
[Crossref]

Favero, I.

B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gerard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106,” Optica 4(2), 218–221 (2017).
[Crossref]

D. Parrain, C. Baker, G. Wang, B. Guha, E. G. Santos, A. Lemaître, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

C. Baker, W. Hease, D.T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072–14086 (2014).
[Crossref] [PubMed]

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

S. Mariani, A. Andronico, O. Mauguin, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “AlGaAs microdisk cavities for second-harmonic generation,” Opt. Lett. 38(19), 3965–3968 (2013).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
[Crossref]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photon. 3(4), 201–205 (2009).
[Crossref]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).

Gandomkar, M.

Gärtner, C.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Gerard, B.

Gil-Santos, E.

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

Gomez, C.

B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gerard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106,” Optica 4(2), 218–221 (2017).
[Crossref]

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Guha, B.

Harlow, J.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Haynes, W. M.

W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC handbook of chemistry and physics. CRC Press, 2012.

Hease, W.

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

C. Baker, W. Hease, D.T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072–14086 (2014).
[Crossref] [PubMed]

Hoelscher-Obermaier, J.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Hossein-Zadeh, M.

Hunger, D.

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
[Crossref]

Husko, C.

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 1108 (2009).
[Crossref]

Iodice, M.

F. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 µ m,” Appl. Phys. Lett. 77(11), 1614–1616 (2000).
[Crossref]

Jiang, W.C.

W. Yu, W.C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Johnson, T. J.

Jusserand, B.

B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaître, “Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,” Phys. Rev. Lett. 115(26), 267402 (2015).
[Crossref]

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photon. 3(4), 201–205 (2009).
[Crossref]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Lehnert, K.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Lemaître, A.

B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gerard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106,” Optica 4(2), 218–221 (2017).
[Crossref]

D. Parrain, C. Baker, G. Wang, B. Guha, E. G. Santos, A. Lemaître, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015).
[Crossref] [PubMed]

B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaître, “Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,” Phys. Rev. Lett. 115(26), 267402 (2015).
[Crossref]

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

S. Mariani, A. Andronico, O. Mauguin, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “AlGaAs microdisk cavities for second-harmonic generation,” Opt. Lett. 38(19), 3965–3968 (2013).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
[Crossref]

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).

Leo, G.

B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gerard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106,” Optica 4(2), 218–221 (2017).
[Crossref]

D. Parrain, C. Baker, G. Wang, B. Guha, E. G. Santos, A. Lemaître, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

C. Baker, W. Hease, D.T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072–14086 (2014).
[Crossref] [PubMed]

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

S. Mariani, A. Andronico, O. Mauguin, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “AlGaAs microdisk cavities for second-harmonic generation,” Opt. Lett. 38(19), 3965–3968 (2013).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).

Leseman, Z. C.

Li, D.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Lian, J.

Lide, D. R.

W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC handbook of chemistry and physics. CRC Press, 2012.

Lin, Q.

W. Yu, W.C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

Liu, F.

Lu, T.

W. Yu, W.C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Ludwig, M.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

Mariani, S.

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

Marsault, F.

Mauguin, O.

Metzger, C.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

Morgenroth, L.

Mosk, A. P.

Neuenhahn, C.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

Nguyen, D.T.

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

C. Baker, W. Hease, D.T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072–14086 (2014).
[Crossref] [PubMed]

Nia, R. M.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Ortlieb, A.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

Ost, L.

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
[Crossref]

Painter, O.

Parrain, D.

Poddubny, A. N.

B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaître, “Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,” Phys. Rev. Lett. 115(26), 267402 (2015).
[Crossref]

Poshakinskiy, A. V.

B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaître, “Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,” Phys. Rev. Lett. 115(26), 267402 (2015).
[Crossref]

Purdy, T. P.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Regal, C. A.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Reichel, J.

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
[Crossref]

Rendina, I.

F. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 µ m,” Appl. Phys. Lett. 77(11), 1614–1616 (2000).
[Crossref]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Rossi, A. De

S. Sokolov, J. Lian, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the linear thermo-optical coefficient of Ga0.51In0.49P using photonic crystal nanocavities,” Appl. Opt. 56(11), 3219–3222 (2017).
[Crossref] [PubMed]

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 1108 (2009).
[Crossref]

Santos, E. G.

Schmöle, J.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Senellart, P.

D. Parrain, C. Baker, G. Wang, B. Guha, E. G. Santos, A. Lemaître, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
[Crossref]

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).

Simmonds, R. W.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Siquans, K.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Sirois, A.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Sokolov, S.

Stapfner, S.

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
[Crossref] [PubMed]

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
[Crossref]

Teufel, J.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Tran, N-V-Q.

E. Weidner, S. Combrié, A. de Rossi, N-V-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Tran, Q. V.

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 1108 (2009).
[Crossref]

Ulin, V.

Vahala, K.

Vahala, K. J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Wang, G.

Weidner, E.

E. Weidner, S. Combrié, A. de Rossi, N-V-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Weig, E. M.

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
[Crossref] [PubMed]

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
[Crossref]

Whittaker, J. D.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Wieczorek, W.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Yu, P-L.

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

Yu, W.

W. Yu, W.C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. M. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102(15), 151910 (2009).
[Crossref]

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 1108 (2009).
[Crossref]

G. D. Cole, P-L. Yu, C. Gärtner, K. Siquans, R. M. Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, and M. Aspelmeyer, “Tensile-strained InxGa1-xP membranes for cavity optomechanics,” Appl. Phys. Lett. 104(20), 201908 (2014).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

F. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 µ m,” Appl. Phys. Lett. 77(11), 1614–1616 (2000).
[Crossref]

E. Weidner, S. Combrié, A. de Rossi, N-V-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

J. Appl. Phys. (2)

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[Crossref]

S. Adachi, “GaAs, AlAs, and Alx Ga1−x As material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

Nat. Commun. (1)

W. Yu, W.C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Gil-Santos, C. Baker, D.T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10, 810–816 (2015).
[Crossref] [PubMed]

Nat. Photon. (1)

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photon. 3(4), 201–205 (2009).
[Crossref]

Nature (3)

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. D. Whittaker, K. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (4)

B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaître, “Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,” Phys. Rev. Lett. 115(26), 267402 (2015).
[Crossref]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction,” Phys. Rev. Lett. 101(13), 133903 (2008).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

Proc. SPIE (1)

L. Ding, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712(4), 771211 (2010).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

Other (6)

S. Mariani, “Three-wave mixing in semiconductor whispering gallery mode microcavities,” PhD thesis Université Paris Diderot, (2014).

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities, Anthony H. W. Choi, ed. (PanStanford, 2014).

Ioffe Institute, “Physical Properties of Semiconductor”, http://www.ioffe.ru/SVA/NSM/Semicond/index.html

W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC handbook of chemistry and physics. CRC Press, 2012.

S. Adachi, Physical properties of III–V semiconductor compounds, John Wiley & Sons, 1992.
[Crossref]

C. Baker, On-chip nano-optomechanical whispering gallery resonators, PhD thesis, Université Paris Diderot, 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 An (a) In0.5Ga0.5P and (b) Al0.4Ga0.6As optomechanical disk over a GaAs pedestal.
Fig. 2
Fig. 2 Optical spectrum of (a) an InGaP disk of radius 3.25 µm and thickness 200 nm and (b) an AlGaAs disk of radius 2 µm and thickness 150 nm. The spectra are acquired with an optical power of 50 µW, measured at the output of the fiber. The radial order (p) of the WGMs is identified with the help of Finite Element Method (FEM) simulations and indicated. The probe light is TE-polarized (in the disk plane). (c) and (d) Mechanical spectra of the same disks as above, where the 1st order RBM is measured in the Brownian motion regime by optomechanical means.
Fig. 3
Fig. 3 Optomechanical self-oscillation of InGaP and AlGaAs disk resonators. (a,b) Evolution of the mechanical spectrum as a function of normalized detuning Δω/κ. (c,d) Mechanical energy as a function of Δω/κ. The measurements of Fig. 3(a) are obtained for an optical power of 1.1 mW in the fiber taper, using a TE WGM (p = 3) with a loaded Qopt = 5 × 104, while those of Fig. 3(b) are obtained for 4.2 mW of optical power, using a TE WGM (p = 1) with loaded Qopt = 7 × 103. The dashed line shows the threshold of self-oscillation.
Fig. 4
Fig. 4 (a) An In0.5Ga0.5P disk on a mesa. Inset is a schematic representation of the evanescent coupling of light from a tapered fiber to a disk resonator. (b) Several In0.5Ga0.5P disks on a mesa.
Fig. 5
Fig. 5 (a) Temperature profile (steady-state) in an InGaP disk, for 1 mW absorbed power at the disk periphery. The colour bar indicates the temperature in K. (b) Temperature as a function of time. The green line corresponds to an exponential fit. (c,d) Thermo-optic shift of a WGM resonance in an AlGaAs disk. (c) Experimental measurements. (d) Results of our model [17]. The indicated power levels are measured at the fiber output.
Fig. 6
Fig. 6 Mechanical linewidth as function of the laser wavelength, extracted from the self-oscillation spectra series of Fig. 3 for both the InGaP (a) and AlGaAs (b) disk resonator. The open symbols are experimental data, while the solid line is a fit by our optomechanical model, with a thermal time τth=1.8 (0.085) µs for the InGaP (AlGaAs) resonator. The dashed lines indicate the self-oscillation threshold.

Tables (3)

Tables Icon

Table 1 Radiation pressure, Electrostriction and Photothermal force per photon, together with the thermal relaxation time and vacuum optomechanical coupling g0 for the considered InGaP and AlGaAs disk resonator.

Tables Icon

Table 2 Best Qopt and Qm (intrinsic values), along with the frequency of the 1st order RBM, measured on different disk resonators. Measurements are with an optical wavelength range 1500–1600 nm and at room temperature.

Tables Icon

Table 3 Material properties of GaAs, In0.5 Ga0.5 P and Al0.4 Ga0.6 As disks [18, 22, 30–38].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a ˙ ( t ) = κ 2 a ( t ) + i [ Δ b ω + g o m x ( t ) + ω c a v n d n d t Δ T ( t ) ] a ( t ) + κ e x a i n ( t )
m e f f x ¨ ( t ) + m e f f Γ m x ˙ ( t ) + m e f f ω m 2 x ( t ) = F o p t ( t ) + F p t h ( t ) + F L ( t )
d Δ T ( t ) d t = Δ T ( t ) τ t h + Γ p t h | a ( t ) | 2 τ t h
Γ m , e f f = Γ m [ 1 + | < a > | 2 g o m 2 ω m m e f f ω m Γ m { κ 2 ( Δ ω + ω m ) 2 + κ 2 4 κ 2 ( Δ ω ω m ) 2 + κ 2 4 } + | < a > | 2 g o m ω m m e f f ω m Γ m F p t h 1 1 + ω m 2 τ t h 2 { ( Δ ω + ω m ) ω m τ t h κ 2 ( Δ ω + ω m ) 2 + κ 2 4 + ( Δ ω ω m ) ω τ t h + κ 2 ( Δ ω ω m ) 2 + κ 2 4 } ]

Metrics