Abstract

In order to demonstrate cavity quantum electrodynamics using photonic crystal (PhC) cavities fabricated around self-assembled quantum dots (QDs), reliable spectral and spatial overlap between the cavity mode and the quantum dot is required. We present a method for using photoresist to optically fabricate heterostructure cavities in a PhC waveguide with a combined photolithography and micro-photoluminescence spectroscopy system. The system can identify single QDs with a spatial precision of ±25 nm, and we confirm the creation of high quality factor cavity modes deterministically placed with the same spatial precision. This method offers a promising route towards bright, on-chip single photon sources for quantum information applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide-coupled photonic crystal cavity for quantum dot spin readout

R. J. Coles, N. Prtljaga, B. Royall, I. J. Luxmoore, A. M. Fox, and M. S. Skolnick
Opt. Express 22(3) 2376-2385 (2014)

Tilted-potential photonic crystal cavities for integrated quantum photonics

A. Delgoffe, A. Miranda, B. Rigal, A. Lyasota, A. Rudra, B. Dwir, and E. Kapon
Opt. Express 27(15) 21822-21833 (2019)

Microfiber-microcavity system for efficient single photon collection

Chang-Min Lee, Hee-Jin Lim, Mireu Lee, Christian Schneider, Sebastian Maier, Sven Höfling, Martin Kamp, and Yong-Hee Lee
Opt. Express 24(20) 23471-23480 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Gazzano and G. S. Solomon, “Toward optical quantum information processing with quantum dots coupled to microstructures,” J. Opt. Soc. Am. B 33, C160–C175 (2016).
    [Crossref]
  2. H.-R. Wei and F.-G. Deng, “Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities,” Sci. Rep. 4, 7551 (2014).
    [Crossref] [PubMed]
  3. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
    [Crossref]
  4. M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
    [Crossref]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref] [PubMed]
  6. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
    [Crossref] [PubMed]
  7. M. Dušek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
    [Crossref]
  8. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, (IEEE, 1984), pp. 175–179.
  9. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  10. O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
    [Crossref] [PubMed]
  11. S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
    [Crossref] [PubMed]
  12. H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
    [Crossref]
  13. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
    [Crossref]
  14. S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
    [Crossref]
  15. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  16. D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005).
    [Crossref] [PubMed]
  17. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic- crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003).
    [Crossref]
  18. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
    [Crossref] [PubMed]
  19. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, “Surface morphology evolution during the overgrowth of large InAs-GaAs quantum dots,” Appl. Phys. Lett. 79, 3615–3617 (2001).
    [Crossref]
  20. K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
    [Crossref] [PubMed]
  21. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
    [Crossref]
  22. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
    [Crossref]
  23. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [Crossref]
  24. B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities,” New J. Phys. 8, 209 (2006).
    [Crossref]
  25. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15, 17248–17253 (2007).
    [Crossref] [PubMed]
  26. S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Configurable silicon photonic crystal waveguides,” Appl. Phys. Lett. 103, 261112 (2013).
    [Crossref]
  27. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16, 6331–6339 (2008).
    [Crossref] [PubMed]
  28. M.-K. Seo, J.-H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17, 6790–6798 (2009).
    [Crossref] [PubMed]
  29. K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
    [Crossref]
  30. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  31. D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
    [Crossref]
  32. T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
    [Crossref]
  33. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
    [Crossref]
  34. F. Brossard, S. Schirmer, A. Chalcraft, and D. Whittaker, “High Q photonic crystal cavities with tapered air holes,” Proc. SPIE 7933, 79331W (2011).
    [Crossref]
  35. F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
    [Crossref]
  36. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
    [Crossref]
  37. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
    [Crossref]

2016 (1)

2014 (2)

H.-R. Wei and F.-G. Deng, “Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities,” Sci. Rep. 4, 7551 (2014).
[Crossref] [PubMed]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

2013 (3)

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Configurable silicon photonic crystal waveguides,” Appl. Phys. Lett. 103, 261112 (2013).
[Crossref]

2012 (1)

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

2011 (1)

F. Brossard, S. Schirmer, A. Chalcraft, and D. Whittaker, “High Q photonic crystal cavities with tapered air holes,” Proc. SPIE 7933, 79331W (2011).
[Crossref]

2010 (4)

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

2009 (1)

2008 (2)

S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16, 6331–6339 (2008).
[Crossref] [PubMed]

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (5)

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities,” New J. Phys. 8, 209 (2006).
[Crossref]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref] [PubMed]

2005 (4)

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005).
[Crossref] [PubMed]

2003 (2)

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[Crossref]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic- crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003).
[Crossref]

2001 (3)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, “Surface morphology evolution during the overgrowth of large InAs-GaAs quantum dots,” Appl. Phys. Lett. 79, 3615–3617 (2001).
[Crossref]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

1999 (2)

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

M. Dušek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

1987 (1)

D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
[Crossref]

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abram, I.

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

Afzelius, M.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Ahn, B.-H.

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Almeida, M. P.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

Appel, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Asano, T.

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities,” New J. Phys. 8, 209 (2006).
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Atatüre, M.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

Awschalom, D. D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Badolato, A.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

Bajaj, K. K.

D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
[Crossref]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Bell, G. R.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, “Surface morphology evolution during the overgrowth of large InAs-GaAs quantum dots,” Appl. Phys. Lett. 79, 3615–3617 (2001).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, (IEEE, 1984), pp. 175–179.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bettiol, A. A.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[Crossref]

Birowosuto, M. D.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Bordas, F.

Bose, R.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

Boyer de la Giroday, A.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Bozio, R.

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, (IEEE, 1984), pp. 175–179.

Braun, T.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Briggs, G. A. D.

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Brossard, F.

F. Brossard, S. Schirmer, A. Chalcraft, and D. Whittaker, “High Q photonic crystal cavities with tapered air holes,” Proc. SPIE 7933, 79331W (2011).
[Crossref]

Brossard, F. S. F.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Burkard, G.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Cassagne, D.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Chalcraft, A.

F. Brossard, S. Schirmer, A. Chalcraft, and D. Whittaker, “High Q photonic crystal cavities with tapered air holes,” Proc. SPIE 7933, 79331W (2011).
[Crossref]

d’Yerville, M. L. V.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

De Riedmatten, H.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

de Sterke, C. M.

Deng, F.-G.

H.-R. Wei and F.-G. Deng, “Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities,” Sci. Rep. 4, 7551 (2014).
[Crossref] [PubMed]

Dewhurst, S. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

Dušek, M.

M. Dušek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

Eggleton, B. J.

Eich, M.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Configurable silicon photonic crystal waveguides,” Appl. Phys. Lett. 103, 261112 (2013).
[Crossref]

Englund, D.

Fischer, J.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Forchel, A.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Frick, S.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Fushman, I.

Gardin, S.

Gazzano, O.

O. Gazzano and G. S. Solomon, “Toward optical quantum information processing with quantum dots coupled to microstructures,” J. Opt. Soc. Am. B 33, C160–C175 (2016).
[Crossref]

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

Gisin, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Green, A. M.

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Grillet, C.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Haderka, O.

M. Dušek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

Hadjipanayi, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[Crossref]

Heindel, T.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Hendrych, M.

M. Dušek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

Hennessy, K.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

Höfling, S.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Hopkinson, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Hu, C. Y.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Hu, E.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Hugues, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Imamoglu, A.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Jarjour, A. F.

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Jelezko, F.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Jen, A. K.-Y.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Configurable silicon photonic crystal waveguides,” Appl. Phys. Lett. 103, 261112 (2013).
[Crossref]

Jeong, K.-Y.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Jones, T. S.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, “Surface morphology evolution during the overgrowth of large InAs-GaAs quantum dots,” Appl. Phys. Lett. 79, 3615–3617 (2001).
[Crossref]

Jouanin, C.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Joyce, P. B.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, “Surface morphology evolution during the overgrowth of large InAs-GaAs quantum dots,” Appl. Phys. Lett. 79, 3615–3617 (2001).
[Crossref]

Kamp, M.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Kang, J.-H.

Kim, H.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

Kim, J.-Y.

Kim, M.-K.

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kramper, P.

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

Kröll, S.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Krzyzewski, T. J.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, “Surface morphology evolution during the overgrowth of large InAs-GaAs quantum dots,” Appl. Phys. Lett. 79, 3615–3617 (2001).
[Crossref]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Laurent, S.

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

Lee, K. H.

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Lee, Y.-H.

M.-K. Seo, J.-H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17, 6790–6798 (2009).
[Crossref] [PubMed]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic- crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003).
[Crossref]

Lemaître, A.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

Letartre, X.

S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16, 6331–6339 (2008).
[Crossref] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Litton, C. W.

D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
[Crossref]

Loss, D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Luo, J.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Configurable silicon photonic crystal waveguides,” Appl. Phys. Lett. 103, 261112 (2013).
[Crossref]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[Crossref]

Matsuo, S.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Müller, J. H.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Na, J. H.

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Nauerth, S.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Noda, S.

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15, 17248–17253 (2007).
[Crossref] [PubMed]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[Crossref]

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities,” New J. Phys. 8, 209 (2006).
[Crossref]

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Notomi, M.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic- crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003).
[Crossref]

Nötzel, R.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Nowak, A. K.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

Nunn, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Park, H.-G.

Parsons, J. D.

D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
[Crossref]

Peters, G.

D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
[Crossref]

Petroff, P. M.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Petrov, A.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Configurable silicon photonic crystal waveguides,” Appl. Phys. Lett. 103, 261112 (2013).
[Crossref]

Polzik, E. S.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Portalupi, S. L.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

Prorok, S.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Configurable silicon photonic crystal waveguides,” Appl. Phys. Lett. 103, 261112 (2013).
[Crossref]

Pun, E. Y. B.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rahmani, A.

Rarity, J. G.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Rau, M.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Reitzenstein, S.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Reynolds, D. C.

D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
[Crossref]

Robert-Philip, I.

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

Roche, O. M.

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Rojo-Romeo, P.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Rosenfeld, W.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ryu, H.-Y.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic- crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003).
[Crossref]

Sagnes, I.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

Schirmer, S.

F. Brossard, S. Schirmer, A. Chalcraft, and D. Whittaker, “High Q photonic crystal cavities with tapered air holes,” Proc. SPIE 7933, 79331W (2011).
[Crossref]

Schneider, C.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Scrimgeour, J.

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Seassal, C.

S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16, 6331–6339 (2008).
[Crossref] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Senellart, P.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

Seo, M.-K.

Sharp, D. N.

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Shen, T. C.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Shields, A. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Simon, C.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Sköld, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Small, A.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Solomon, G. S.

O. Gazzano and G. S. Solomon, “Toward optical quantum information processing with quantum dots coupled to microstructures,” J. Opt. Soc. Am. B 33, C160–C175 (2016).
[Crossref]

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

Song, B.-S.

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities,” New J. Phys. 8, 209 (2006).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Steel, M. J.

Stevenson, R. M.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Sum, T. C.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[Crossref]

Sumikura, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Tanaka, Y.

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15, 17248–17253 (2007).
[Crossref] [PubMed]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[Crossref]

Taniyama, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Taylor, R. A.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Thew, R.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Tomljenovic-Hanic, S.

Tung, K. K.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[Crossref]

Turberfield, A. J.

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Unsleber, S.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

van Kan, J. A.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[Crossref]

van Veldhoven, P. J.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Varoutsis, S.

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

Vest, G.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Viktorovitch, P.

S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16, 6331–6339 (2008).
[Crossref] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Vuckovic, J.

Waks, E.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

Waldermann, F.

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

Walmsley, I. A.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Wang, X.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Watt, F.

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[Crossref]

Weber, M. C.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Wei, H.-R.

H.-R. Wei and F.-G. Deng, “Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities,” Sci. Rep. 4, 7551 (2014).
[Crossref] [PubMed]

Weinfurter, H.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

White, A. G.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

Whittaker, D.

F. Brossard, S. Schirmer, A. Chalcraft, and D. Whittaker, “High Q photonic crystal cavities with tapered air holes,” Proc. SPIE 7933, 79331W (2011).
[Crossref]

Williams, D. A.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

Wrachtrup, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Xu, X.

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

Xu, X. L.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Young, R. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Yu, P. W.

D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
[Crossref]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Appl. Phys. Lett. (9)

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic- crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, “Surface morphology evolution during the overgrowth of large InAs-GaAs quantum dots,” Appl. Phys. Lett. 79, 3615–3617 (2001).
[Crossref]

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Configurable silicon photonic crystal waveguides,” Appl. Phys. Lett. 103, 261112 (2013).
[Crossref]

K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett. 88, 193106 (2006).
[Crossref]

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006).
[Crossref]

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Eur. Phys. J. D (1)

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

J. Appl. Phys. (1)

D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry-Perot cavity oscillations,” J. Appl. Phys. 61, 342–345 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[Crossref]

Nanotechnology (1)

K. H. Lee, F. S. F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A. M. Green, D. N. Sharp, A. J. Turberfield, D. A. Williams, and R. A. Taylor, “Towards registered single quantum dot photonic devices,” Nanotechnology 19, 455307 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Nat. Photonics (1)

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

New J. Phys. (2)

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources - a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities,” New J. Phys. 8, 209 (2006).
[Crossref]

Opt. Commun. (1)

M. Dušek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999).
[Crossref]

Opt. Express (4)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaître, I. Sagnes, I. Robert-Philip, and I. Abram, “Restoration of photon indistinguishability in the emission of a semiconductor quantum dot,” Phys. Rev. B 72, 041303 (2005).
[Crossref]

Phys. Rev. Lett. (2)

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaître, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Proc. SPIE (1)

F. Brossard, S. Schirmer, A. Chalcraft, and D. Whittaker, “High Q photonic crystal cavities with tapered air holes,” Proc. SPIE 7933, 79331W (2011).
[Crossref]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

Sci. Rep. (2)

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

H.-R. Wei and F.-G. Deng, “Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities,” Sci. Rep. 4, 7551 (2014).
[Crossref] [PubMed]

Science (3)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[Crossref] [PubMed]

Other (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, (IEEE, 1984), pp. 175–179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A 3D rendering showing the structure of a photoresist-on-waveguide cavity. The SU-8 photoresist disk is shown on top of a PhC waveguide. The change in local refractive index due to the presence of the photoresist gives rise to the optical cavity mode.
Fig. 2
Fig. 2 (a) and (b) Calculated Ey (TE) electric field distributions of the PhC cavity modes created by 25 nm and 400 nm thick SU-8 disks (central black circles) respectively. (c) Calculated Q factor components and mode volume as a function of SU-8 thickness for a 1 μm diameter disk. (d) and (e) Magnitude of E z 2 (TM) electric field averaged over 4 periods for 25 nm and 400 nm thick SU-8 disks. (f) Band structure showing two TE-like modes (solid lines), the first TM-like mode (dashed line), and the cavity mode frequency (horizontal black line).
Fig. 3
Fig. 3 Plots (a) and (d) show μPL spectra taken at the centre of the cavity mode on each device. Plots (b), (c), (e), and (f) are 1-dimensional μPL maps taken before and after fabrication of photoresist disks on top of waveguides. Each map shows the photoluminescence intensity along the waveguide. In (c) and (f) it can be seen that PhC cavity modes have been created.
Fig. 4
Fig. 4 (a) SEM image of a SU-8 photoresist disk on top of a PhC waveguide. (b) corresponding 2D μPL map over the same device as (a) at the wavelength of the cavity mode. The black overlay indicates the location of the PhC structure and photoresist disk. This shows that the cavity mode is created at the spatial location of the photoresist disk.
Fig. 5
Fig. 5 Q factor of PhC cavities created by photolithography of SU-8 disks as a function of the disk diameter and thickness. Thinner SU-8 clearly correlates with higher Q factors.

Metrics