Abstract

At 532 nm wavelength, optical properties of black carbon (BC) particles mixed with sulfate are computed by use of two morphological models, a closed cell and a coated aggregate model. For high BC volume fractions f, both models yield comparable results. As more sulfate is added, some of the optical properties diverge. The backscattering depolarization ratio δL is particularly sensitive to the morphology. Comparison with field measurements suggests that the closed cell model underestimates δL; the coated aggregate model yields good results for intermediate and high values of f, but somewhat too high results for low f. This could be improved by taking the collapse of fractal structure with decreasing f into account.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations

Michael Kahnert, Timo Nousiainen, Hannakaisa Lindqvist, and Martin Ebert
Opt. Express 20(9) 10042-10058 (2012)

Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates

Michael Kahnert, Timo Nousiainen, and Hannakaisa Lindqvist
Opt. Express 21(7) 7974-7993 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nature Geoscience 1, 221–227 (2008).
    [Crossref]
  2. E. Andersson and M. Kahnert, “Coupling aerosol optics to the MATCH (v5. 5.0) chemical transport model and the SALSA (v1) aerosol microphysics module,” Geosci. Model Dev. 9, 1803–1826 (2016).
    [Crossref]
  3. M. Kahnert, T. Nousiainen, and H. Lindqvist, “Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates,” Opt. Express 21, 7974–7992 (2013).
    [Crossref] [PubMed]
  4. T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).
    [Crossref]
  5. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc. 79, 831–844 (1998).
    [Crossref]
  6. K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res. 104, 15941–15954 (1999).
    [Crossref]
  7. A. Worringen, M. Ebert, T. Trautmann, S. Weinbruch, and G. Helas, “Optical properties of internally mixed ammonium sulfate and soot particles–a study of individual aerosol particles and ambient aerosol populations,” Appl. Opt. 47, 3835–3845 (2008).
    [Crossref] [PubMed]
  8. M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations,” Opt. Express 20, 10042–10058 (2012).
    [Crossref] [PubMed]
  9. L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 262–273 (2007).
    [Crossref]
  10. B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. 13, 5089–5101 (2013).
    [Crossref]
  11. Y. Wu, T. Cheng, L. Zheng, H. Chen, and H. Xu, “Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host,” J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
    [Crossref]
  12. L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109, 2656–2663 (2008).
    [Crossref]
  13. M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol. 44, 453–460 (2010).
    [Crossref]
  14. M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys. 11, 11745–11759 (2011).
    [Crossref]
  15. Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016).
    [Crossref]
  16. Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols,” J. Quant. Spectrosc. Radiat. Transfer 182, 1–11 (2016).
    [Crossref]
  17. F. Liu, J. Yon, and A. Bescond, “On the radiative properties of soot aggregates — Part 2: Effects of coating,” J. Quant. Spectrosc. Radiat. Transfer 172, 134–145 (2016).
    [Crossref]
  18. Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols,” J. Quant. Spectrosc. Radiat. Transfer 195, 147–155 (2017).
    [Crossref]
  19. J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transfer 165, 43–55 (2015).
    [Crossref]
  20. K. N. Liou, Y. Takano, and P. Yang, “Light absorption and scattering by aggregates: Application to black carbon and snow grains,” J. Quant. Spectrosc. Radiat. Transfer 112, 1581–1594 (2011).
    [Crossref]
  21. A. R. Jones, “Light scattering in combustion,” in “Light Scattering Reviews,” A. Kokhanovsky, ed. (2006), Springer, Berlin, pp. 393–444.
    [Crossref]
  22. K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res. 112, D14202 (2007).
  23. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
    [Crossref]
  24. Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
    [Crossref]
  25. D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
    [Crossref]
  26. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
    [Crossref]
  27. B. T. Draine and P. J. Flatau, “The discrete dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008).
    [Crossref]
  28. M. Kahnert, “Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review,” J. Quant. Spectrosc. Radiat. Transfer 178, 22–37 (2016).
    [Crossref]
  29. A. Lakhtakia and G. W. Mulholland, “On two numerical techniques for light scattering by dielectric agglomerated structures,” J. Res. Natl. Inst. Stand. Technol. 98, 699–716 (1993).
    [Crossref] [PubMed]
  30. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
    [Crossref]
  31. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A. 8, 871–882 (1991).
    [Crossref]
  32. N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359–5365 (1992).
    [Crossref] [PubMed]
  33. K. Sassen and V. I. Khvorostyanov, “Cloud effects from boreal forest fire smoke: evidence for ice nucleation from polarization lidar data and cloud model simulations,” Env. Res. Lett. 3, 1–12 (2008).
    [Crossref]
  34. S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
    [Crossref]
  35. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
    [Crossref]
  36. M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
    [Crossref]
  37. A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
    [Crossref]
  38. N. Sugimoto, B. Tatarov, A. Shimizu, I. Matsui, and T. Nishizawa, “Optical characteristics of forest-fire smoke observed with two-wavelength Mie-scattering lidars and high-spectral-resoluion lidar over Japan,” SOLA 6, 93–96 (2010).
    [Crossref]
  39. S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
    [Crossref]
  40. A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, “Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus,” Atmos. Chem. Phys. 14, 12155–12165 (2014).
    [Crossref]
  41. F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
    [Crossref]
  42. S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
    [Crossref]
  43. M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
    [Crossref]

2017 (1)

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols,” J. Quant. Spectrosc. Radiat. Transfer 195, 147–155 (2017).
[Crossref]

2016 (5)

M. Kahnert, “Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review,” J. Quant. Spectrosc. Radiat. Transfer 178, 22–37 (2016).
[Crossref]

E. Andersson and M. Kahnert, “Coupling aerosol optics to the MATCH (v5. 5.0) chemical transport model and the SALSA (v1) aerosol microphysics module,” Geosci. Model Dev. 9, 1803–1826 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols,” J. Quant. Spectrosc. Radiat. Transfer 182, 1–11 (2016).
[Crossref]

F. Liu, J. Yon, and A. Bescond, “On the radiative properties of soot aggregates — Part 2: Effects of coating,” J. Quant. Spectrosc. Radiat. Transfer 172, 134–145 (2016).
[Crossref]

2015 (3)

Y. Wu, T. Cheng, L. Zheng, H. Chen, and H. Xu, “Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host,” J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transfer 165, 43–55 (2015).
[Crossref]

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

2014 (4)

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
[Crossref]

A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, “Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus,” Atmos. Chem. Phys. 14, 12155–12165 (2014).
[Crossref]

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
[Crossref]

2013 (3)

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. 13, 5089–5101 (2013).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates,” Opt. Express 21, 7974–7992 (2013).
[Crossref] [PubMed]

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
[Crossref]

2012 (2)

M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations,” Opt. Express 20, 10042–10058 (2012).
[Crossref] [PubMed]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

2011 (3)

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
[Crossref]

K. N. Liou, Y. Takano, and P. Yang, “Light absorption and scattering by aggregates: Application to black carbon and snow grains,” J. Quant. Spectrosc. Radiat. Transfer 112, 1581–1594 (2011).
[Crossref]

M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys. 11, 11745–11759 (2011).
[Crossref]

2010 (2)

M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol. 44, 453–460 (2010).
[Crossref]

N. Sugimoto, B. Tatarov, A. Shimizu, I. Matsui, and T. Nishizawa, “Optical characteristics of forest-fire smoke observed with two-wavelength Mie-scattering lidars and high-spectral-resoluion lidar over Japan,” SOLA 6, 93–96 (2010).
[Crossref]

2009 (1)

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

2008 (5)

K. Sassen and V. I. Khvorostyanov, “Cloud effects from boreal forest fire smoke: evidence for ice nucleation from polarization lidar data and cloud model simulations,” Env. Res. Lett. 3, 1–12 (2008).
[Crossref]

B. T. Draine and P. J. Flatau, “The discrete dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008).
[Crossref]

A. Worringen, M. Ebert, T. Trautmann, S. Weinbruch, and G. Helas, “Optical properties of internally mixed ammonium sulfate and soot particles–a study of individual aerosol particles and ambient aerosol populations,” Appl. Opt. 47, 3835–3845 (2008).
[Crossref] [PubMed]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109, 2656–2663 (2008).
[Crossref]

V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nature Geoscience 1, 221–227 (2008).
[Crossref]

2007 (3)

L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 262–273 (2007).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res. 112, D14202 (2007).

2006 (1)

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).
[Crossref]

2004 (1)

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

2002 (1)

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

1999 (1)

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res. 104, 15941–15954 (1999).
[Crossref]

1998 (1)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc. 79, 831–844 (1998).
[Crossref]

1996 (1)

1994 (1)

1993 (1)

A. Lakhtakia and G. W. Mulholland, “On two numerical techniques for light scattering by dielectric agglomerated structures,” J. Res. Natl. Inst. Stand. Technol. 98, 699–716 (1993).
[Crossref] [PubMed]

1992 (1)

1991 (1)

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A. 8, 871–882 (1991).
[Crossref]

Adachi, K.

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res. 112, D14202 (2007).

Althausen, D.

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

Andersson, E.

E. Andersson and M. Kahnert, “Coupling aerosol optics to the MATCH (v5. 5.0) chemical transport model and the SALSA (v1) aerosol microphysics module,” Geosci. Model Dev. 9, 1803–1826 (2016).
[Crossref]

Ansmann, A.

A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, “Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus,” Atmos. Chem. Phys. 14, 12155–12165 (2014).
[Crossref]

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

Arnott, W. P.

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109, 2656–2663 (2008).
[Crossref]

Baumann, R.

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Bergstrom, R. W.

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).
[Crossref]

Berkoff, T. A.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

Bescond, A.

F. Liu, J. Yon, and A. Bescond, “On the radiative properties of soot aggregates — Part 2: Effects of coating,” J. Quant. Spectrosc. Radiat. Transfer 172, 134–145 (2016).
[Crossref]

Bierwirth, E.

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

Bond, T. C.

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).
[Crossref]

Burton, S. P.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Buseck, P. R.

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res. 112, D14202 (2007).

Butler, C. F.

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Carmichael, G.

V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nature Geoscience 1, 221–227 (2008).
[Crossref]

Chen, H.

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols,” J. Quant. Spectrosc. Radiat. Transfer 195, 147–155 (2017).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols,” J. Quant. Spectrosc. Radiat. Transfer 182, 1–11 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, H. Chen, and H. Xu, “Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host,” J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
[Crossref]

Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
[Crossref]

Cheng, T.

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols,” J. Quant. Spectrosc. Radiat. Transfer 195, 147–155 (2017).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols,” J. Quant. Spectrosc. Radiat. Transfer 182, 1–11 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, H. Chen, and H. Xu, “Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host,” J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
[Crossref]

Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
[Crossref]

Chung, S. H.

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res. 112, D14202 (2007).

Collins, J. E.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

Cook, A. L.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Dahlkötter, F.

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Devasthale, A.

M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys. 11, 11745–11759 (2011).
[Crossref]

Dong, J.

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transfer 165, 43–55 (2015).
[Crossref]

Draine, B. T.

Ebert, M.

Esselborn, M.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
[Crossref]

Fenn, M. A.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

Ferrare, R. A.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Fiebig, M.

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

Fix, A.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
[Crossref]

Flatau, P. J.

Friedrich, H.

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res. 112, D14202 (2007).

Fromm, M.

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Fuller, K. A.

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res. 104, 15941–15954 (1999).
[Crossref]

Groß, S.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
[Crossref]

Gu, X.

Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
[Crossref]

Gysel, M.

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Hadjimitsis, D.

A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, “Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus,” Atmos. Chem. Phys. 14, 12155–12165 (2014).
[Crossref]

Hair, J. W.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Harper, D. B.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

Helas, G.

Hess, M.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc. 79, 831–844 (1998).
[Crossref]

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

Hostetler, C. A.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Jones, A. R.

A. R. Jones, “Light scattering in combustion,” in “Light Scattering Reviews,” A. Kokhanovsky, ed. (2006), Springer, Berlin, pp. 393–444.
[Crossref]

Kahnert, M.

E. Andersson and M. Kahnert, “Coupling aerosol optics to the MATCH (v5. 5.0) chemical transport model and the SALSA (v1) aerosol microphysics module,” Geosci. Model Dev. 9, 1803–1826 (2016).
[Crossref]

M. Kahnert, “Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review,” J. Quant. Spectrosc. Radiat. Transfer 178, 22–37 (2016).
[Crossref]

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates,” Opt. Express 21, 7974–7992 (2013).
[Crossref] [PubMed]

M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations,” Opt. Express 20, 10042–10058 (2012).
[Crossref] [PubMed]

M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys. 11, 11745–11759 (2011).
[Crossref]

M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol. 44, 453–460 (2010).
[Crossref]

Khlebtsov, N. G.

Khvorostyanov, V. I.

K. Sassen and V. I. Khvorostyanov, “Cloud effects from boreal forest fire smoke: evidence for ice nucleation from polarization lidar data and cloud model simulations,” Env. Res. Lett. 3, 1–12 (2008).
[Crossref]

Kiemle, C.

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

Kirchstetter, T. W.

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. 13, 5089–5101 (2013).
[Crossref]

Knippertz, P.

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

Koepke, P.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc. 79, 831–844 (1998).
[Crossref]

Kreidenweis, S. M.

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res. 104, 15941–15954 (1999).
[Crossref]

Lakhtakia, A.

A. Lakhtakia and G. W. Mulholland, “On two numerical techniques for light scattering by dielectric agglomerated structures,” J. Res. Natl. Inst. Stand. Technol. 98, 699–716 (1993).
[Crossref] [PubMed]

Leiterer, U.

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

Lindqvist, H.

Liou, K. N.

K. N. Liou, Y. Takano, and P. Yang, “Light absorption and scattering by aggregates: Application to black carbon and snow grains,” J. Quant. Spectrosc. Radiat. Transfer 112, 1581–1594 (2011).
[Crossref]

Liu, F.

F. Liu, J. Yon, and A. Bescond, “On the radiative properties of soot aggregates — Part 2: Effects of coating,” J. Quant. Spectrosc. Radiat. Transfer 172, 134–145 (2016).
[Crossref]

Liu, L.

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109, 2656–2663 (2008).
[Crossref]

L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 262–273 (2007).
[Crossref]

Liu, L. H.

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transfer 165, 43–55 (2015).
[Crossref]

Mackowski, D. W.

Malm, W. C.

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res. 104, 15941–15954 (1999).
[Crossref]

Mamouri, R. E.

A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, “Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus,” Atmos. Chem. Phys. 14, 12155–12165 (2014).
[Crossref]

Matsui, I.

N. Sugimoto, B. Tatarov, A. Shimizu, I. Matsui, and T. Nishizawa, “Optical characteristics of forest-fire smoke observed with two-wavelength Mie-scattering lidars and high-spectral-resoluion lidar over Japan,” SOLA 6, 93–96 (2010).
[Crossref]

Minikin, A.

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Mishchenko, M. I.

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109, 2656–2663 (2008).
[Crossref]

L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 262–273 (2007).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
[Crossref]

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A. 8, 871–882 (1991).
[Crossref]

Mulholland, G. W.

A. Lakhtakia and G. W. Mulholland, “On two numerical techniques for light scattering by dielectric agglomerated structures,” J. Res. Natl. Inst. Stand. Technol. 98, 699–716 (1993).
[Crossref] [PubMed]

Müller, D.

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Murayama, T.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Nisantzi, A.

A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, “Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus,” Atmos. Chem. Phys. 14, 12155–12165 (2014).
[Crossref]

Nishizawa, T.

N. Sugimoto, B. Tatarov, A. Shimizu, I. Matsui, and T. Nishizawa, “Optical characteristics of forest-fire smoke observed with two-wavelength Mie-scattering lidars and high-spectral-resoluion lidar over Japan,” SOLA 6, 93–96 (2010).
[Crossref]

Nousiainen, T.

Obland, M. D.

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Petzold, A.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
[Crossref]

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

Ramanathan, V.

V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nature Geoscience 1, 221–227 (2008).
[Crossref]

Richard, D. T.

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. 13, 5089–5101 (2013).
[Crossref]

Rodgers, R. R.

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Rogers, R. R.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

Rother, T.

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

Sassen, K.

K. Sassen and V. I. Khvorostyanov, “Cloud effects from boreal forest fire smoke: evidence for ice nucleation from polarization lidar data and cloud model simulations,” Env. Res. Lett. 3, 1–12 (2008).
[Crossref]

Sauer, D.

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Scarnato, B.

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. 13, 5089–5101 (2013).
[Crossref]

Schult, I.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc. 79, 831–844 (1998).
[Crossref]

Schulz, O.

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

Seaman, S. T.

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

Seifert, P.

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Sekiguchi, M.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Shimizu, A.

N. Sugimoto, B. Tatarov, A. Shimizu, I. Matsui, and T. Nishizawa, “Optical characteristics of forest-fire smoke observed with two-wavelength Mie-scattering lidars and high-spectral-resoluion lidar over Japan,” SOLA 6, 93–96 (2010).
[Crossref]

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Stifter, A.

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

Sugimoto, N.

N. Sugimoto, B. Tatarov, A. Shimizu, I. Matsui, and T. Nishizawa, “Optical characteristics of forest-fire smoke observed with two-wavelength Mie-scattering lidars and high-spectral-resoluion lidar over Japan,” SOLA 6, 93–96 (2010).
[Crossref]

Takano, Y.

K. N. Liou, Y. Takano, and P. Yang, “Light absorption and scattering by aggregates: Application to black carbon and snow grains,” J. Quant. Spectrosc. Radiat. Transfer 112, 1581–1594 (2011).
[Crossref]

Tatarov, B.

N. Sugimoto, B. Tatarov, A. Shimizu, I. Matsui, and T. Nishizawa, “Optical characteristics of forest-fire smoke observed with two-wavelength Mie-scattering lidars and high-spectral-resoluion lidar over Japan,” SOLA 6, 93–96 (2010).
[Crossref]

Tesche, M.

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

Trautmann, T.

Tsukamoto, T.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Vahidinia, S.

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. 13, 5089–5101 (2013).
[Crossref]

Voigt, C.

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

Wada, K.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Wandinger, U.

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

Weinbruch, S.

Weinzierl, B.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
[Crossref]

Wendisch, M.

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

Wirth, M.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
[Crossref]

Worringen, A.

Wu, Y.

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols,” J. Quant. Spectrosc. Radiat. Transfer 195, 147–155 (2017).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols,” J. Quant. Spectrosc. Radiat. Transfer 182, 1–11 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, H. Chen, and H. Xu, “Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host,” J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
[Crossref]

Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
[Crossref]

Xu, H.

Y. Wu, T. Cheng, L. Zheng, H. Chen, and H. Xu, “Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host,” J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
[Crossref]

Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
[Crossref]

Yang, P.

K. N. Liou, Y. Takano, and P. Yang, “Light absorption and scattering by aggregates: Application to black carbon and snow grains,” J. Quant. Spectrosc. Radiat. Transfer 112, 1581–1594 (2011).
[Crossref]

Yon, J.

F. Liu, J. Yon, and A. Bescond, “On the radiative properties of soot aggregates — Part 2: Effects of coating,” J. Quant. Spectrosc. Radiat. Transfer 172, 134–145 (2016).
[Crossref]

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

Zhao, J. M.

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transfer 165, 43–55 (2015).
[Crossref]

Zheng, L.

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols,” J. Quant. Spectrosc. Radiat. Transfer 195, 147–155 (2017).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols,” J. Quant. Spectrosc. Radiat. Transfer 182, 1–11 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, H. Chen, and H. Xu, “Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host,” J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
[Crossref]

Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
[Crossref]

Aerosol Sci. Technol. (2)

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).
[Crossref]

M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol. 44, 453–460 (2010).
[Crossref]

Appl. Opt. (2)

Atmos Meas. Tech. (1)

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rodgers, M. D. Obland, C. F. Butler, and A. L. Cook, “Aerosol classification using airborne High Spectral Resolution Lidar measurements — methodology and examples,” Atmos Meas. Tech. 5, 73–98 (2012).
[Crossref]

Atmos. Chem. Phys (1)

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, “Aerosol classification by airborne high spectral resolution lidar observations,” Atmos. Chem. Phys 13, 2487–2505 (2013).
[Crossref]

Atmos. Chem. Phys. (5)

A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, “Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus,” Atmos. Chem. Phys. 14, 12155–12165 (2014).
[Crossref]

F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, and C. Voigt, “The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe — aerosol properties and black carbon mixing state,” Atmos. Chem. Phys. 14, 6111–6137 (2014).
[Crossref]

S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers, “Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 15, 13453–13473 (2015).
[Crossref]

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. 13, 5089–5101 (2013).
[Crossref]

M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys. 11, 11745–11759 (2011).
[Crossref]

Bull. Am. Met. Soc. (1)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc. 79, 831–844 (1998).
[Crossref]

Env. Res. Lett. (1)

K. Sassen and V. I. Khvorostyanov, “Cloud effects from boreal forest fire smoke: evidence for ice nucleation from polarization lidar data and cloud model simulations,” Env. Res. Lett. 3, 1–12 (2008).
[Crossref]

Geophys. Res. Lett. (1)

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Geosci. Model Dev. (1)

E. Andersson and M. Kahnert, “Coupling aerosol optics to the MATCH (v5. 5.0) chemical transport model and the SALSA (v1) aerosol microphysics module,” Geosci. Model Dev. 9, 1803–1826 (2016).
[Crossref]

J. Geophys. Res. (3)

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res. 104, 15941–15954 (1999).
[Crossref]

M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer, “Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res. 107, 8130 (2002).
[Crossref]

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res. 112, D14202 (2007).

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. A. (1)

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A. 8, 871–882 (1991).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (14)

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, H. Chen, and H. Xu, “Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host,” J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109, 2656–2663 (2008).
[Crossref]

M. Kahnert, “Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review,” J. Quant. Spectrosc. Radiat. Transfer 178, 22–37 (2016).
[Crossref]

Y. Wu, T. Cheng, X. Gu, L. Zheng, H. Chen, and H. Xu, “The single scattering properties of soot aggregates with concentric core-shell spherical monomers,” J. Quant. Spectrosc. Radiat. Transfer 135, 9–19 (2014).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
[Crossref]

L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 262–273 (2007).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols,” J. Quant. Spectrosc. Radiat. Transfer 182, 1–11 (2016).
[Crossref]

F. Liu, J. Yon, and A. Bescond, “On the radiative properties of soot aggregates — Part 2: Effects of coating,” J. Quant. Spectrosc. Radiat. Transfer 172, 134–145 (2016).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols,” J. Quant. Spectrosc. Radiat. Transfer 195, 147–155 (2017).
[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transfer 165, 43–55 (2015).
[Crossref]

K. N. Liou, Y. Takano, and P. Yang, “Light absorption and scattering by aggregates: Application to black carbon and snow grains,” J. Quant. Spectrosc. Radiat. Transfer 112, 1581–1594 (2011).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

A. Lakhtakia and G. W. Mulholland, “On two numerical techniques for light scattering by dielectric agglomerated structures,” J. Res. Natl. Inst. Stand. Technol. 98, 699–716 (1993).
[Crossref] [PubMed]

Nature Geoscience (1)

V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nature Geoscience 1, 221–227 (2008).
[Crossref]

Opt. Express (2)

SOLA (1)

N. Sugimoto, B. Tatarov, A. Shimizu, I. Matsui, and T. Nishizawa, “Optical characteristics of forest-fire smoke observed with two-wavelength Mie-scattering lidars and high-spectral-resoluion lidar over Japan,” SOLA 6, 93–96 (2010).
[Crossref]

Tellus B (1)

A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, and O. Schulz, “Vertical profiling of convective dust plumes in southern Morocco during SAMUM,” Tellus B 61, 340–353 (2009).
[Crossref]

Other (1)

A. R. Jones, “Light scattering in combustion,” in “Light Scattering Reviews,” A. Kokhanovsky, ed. (2006), Springer, Berlin, pp. 393–444.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Closed cell (left) and coated aggregate model (right) for black carbon aerosol particles mixed with sulfate. Both particles are composed of 64 monomers, and the total volume, the BC volume fraction, and the relative positioning of the monomers are identical in both cases.
Fig. 2
Fig. 2 Principle of the coated aggregate model. Left: BC aggregate with circumscribing sphere of diameter DC = D + 2d. Right: Coating of thickness 1d and 2d, each constrained to lie inside the circumscribing sphere.
Fig. 3
Fig. 3 Left column: Elements of the Stokes scattering matrix of bare BC aggregates composed of 64 monomers, computed with the superposition T-matrix method and analytic orientation averaging (black, reference case), and with the discrete dipole approximation (red), using a dipole spacing d with |m| kd=0.14 and 864 discrete orientation angles. Right: Differences between the DDA and the reference T-matrix results for |m| kd=0.14 (red), 0.22 (blue), and 0.43 (green).
Fig. 4
Fig. 4 Element F22/F11 of the Stokes scattering matrix computed with the superposition T-matrix method for 10 stochastic realizations of a fractal aggregate with prescribed fractal parameters consisting of 64 monomers.
Fig. 5
Fig. 5 Total scattering cross section (first column), absorption cross section (second column), backscattering cross section (third column), and linear backscattering depolarization ratio (fourth column) for BC volume fractions f =100 % (first row), 75 % (second row), 50 % (third row), 25 % (fourth row), and 10 % (fifth row), each computed for coated aggregates (red) and closed cells (blue). The optical properties are shown as a function of the volume-equivalent particle radius. For an ensemble consisting of ten stochastic realizations of the aggregate geometry the arithmetic ensemble-mean and the maximum variation are represented by the solid lines and the shadings, respectively. Dashed lines (rightmost panels in rows 4 and 5) indicate a range of typical field observations.
Fig. 6
Fig. 6 Ratios of the mean optical properties computed with coated aggregates to those computed with the closed cell model. The rows and columns are as in Fig. 5.
Fig. 7
Fig. 7 Element F11 of the Stokes scattering matrix computed for aggregate sizes of Ns =8 (first column), 64 (second column), 216 (third column), and 512 (fourth column). The rows and colors are as in Fig. 5.
Fig. 8
Fig. 8 Element F22/F11 of the Stokes scattering matrix. The columns, rows and colors are as in Fig. 6.

Tables (1)

Tables Icon

Table 1 Linear backscattering depolarization ratio δL from various field measurements.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N s = k 0 ( R g a ) D f .
R g = 1 N s i = 1 N s | r i r c | 2
δ L = F 11 F 22 F 11 + F 22 | Θ = 180 ° ,

Metrics