Abstract

We report the design, fabrication and characterization of a 1-by-5 geometric-phase polarization fan-out grating for coherent beam combining at 1550 nm. The phase profile of the grating is accurately controlled by the local orientation of the binary subwavelength structure instead of the etching depth and profile empowering the grating to be more tolerant to fabrication errors. Deep-UV interference lithography on silicon offers an inexpensive, highly efficient and high damage threshold solution to fabricating large-area fan-out gratings than electron beam lithography (EBL) and photoalignment liquid crystals. The theoretical and experimental diffraction efficiency of the grating is 87% and 85.7% respectively. Such a fan-out grating may find application to high-power beam combining in the infrared regime.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves

Guillaume Bloom, Christian Larat, Eric Lallier, Mane-Si Laure Lee-Bouhours, Brigitte Loiseaux, and Jean-Pierre Huignard
Appl. Opt. 50(5) 701-709 (2011)

Optimized kinoform structures for highly efficient fan-out elements

D. Prongué, H. P. Herzig, R. Dändliker, and M. T. Gale
Appl. Opt. 31(26) 5706-5711 (1992)

High-efficiency binary fan-out gratings by modulation of a high-frequency carrier grating

P. Blair, M. R. Taghizadeh, W. Parkes, and C. D. W. Wilkinson
Appl. Opt. 34(14) 2406-2413 (1995)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  2. C. Wan, B. Tiffany, and J. R. Leger, “Analysis of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 47(6), 770–776 (2011).
    [Crossref]
  3. C. Wan and J. R. Leger, “Experimental measurements of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 48(8), 1045–1051 (2012).
    [Crossref]
  4. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34(26), 5961–5969 (1995).
    [Crossref] [PubMed]
  5. G. Bloom, C. Larat, E. Lallier, G. Lehoucq, S. Bansropun, M. S. Lee-Bouhours, B. Loiseaux, M. Carras, X. Marcadet, G. Lucas-Leclin, and P. Georges, “Passive coherent beam combining of quantum-cascade lasers with a Dammann grating,” Opt. Lett. 36(19), 3810–3812 (2011).
    [Crossref] [PubMed]
  6. D. Pabœuf, F. Emaury, S. de Rossi, R. Mercier, G. Lucas-Leclin, and P. Georges, “Coherent beam superposition of ten diode lasers with a Dammann grating,” Opt. Lett. 35(10), 1515–1517 (2010).
    [Crossref] [PubMed]
  7. Y. Yang, H. Liu, Y. Zheng, M. Hu, C. Liu, Y. Qi, B. He, J. Zhou, Y. Wei, and Q. Lou, “Dammann-grating-based passive phase locking by an all-optical feedback loop,” Opt. Lett. 39(3), 708–710 (2014).
    [Crossref] [PubMed]
  8. M. Khajavikhan and J. R. Leger, “Modal analysis of path length sensitivity in superposition architectures for coherent laser beam combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
    [Crossref]
  9. C. Wan, J. Chen, X. Tang, and Q. Zhan, “Experimental demonstration of a highly efficient fan-out polarization grating,” Sci. Rep. 6(1), 39626 (2016).
    [Crossref] [PubMed]
  10. F. S. Roux, “Geometric phase lens,” J. Opt. Soc. Am. A 23(2), 476–482 (2006).
    [Crossref] [PubMed]
  11. M. W. Kudenov, M. Miskiewicz, N. Sanders, and M. J. Escuti, “Achromatic Wollaston prism beam splitter using polarization gratings,” Opt. Lett. 41(19), 4461–4463 (2016).
    [Crossref] [PubMed]
  12. S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).
  13. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
    [Crossref] [PubMed]
  14. M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
    [Crossref]
  15. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  16. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
    [Crossref]
  17. U. Krackhardt, J. N. Mait, and N. Streibl, “Upper bound on the diffraction efficiency of phase-only fanout elements,” Appl. Opt. 31(1), 27–37 (1992).
    [Crossref] [PubMed]
  18. U. Krackhardt and N. Streibl, “Design of Dammann-gratings for array generation,” Opt. Commun. 74(1–2), 31–36 (1989).
    [Crossref]
  19. S. Pancharatnam, “Generalized theory of interference, and its applications. Part i. Coherent pencils,” Proc. Indian Acad. Sci. A 44(6), 247–262 (1956).
  20. M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984).
    [Crossref]
  21. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
    [Crossref]
  22. S. J. Walker and J. Jahns, “Array generation with multilevel phase gratings,” J. Opt. Soc. Am. A 7(8), 1509–1513 (1990).
    [Crossref]
  23. U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Opt. Express 12(22), 5345–5355 (2004).
    [Crossref] [PubMed]
  24. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  25. M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  26. M. G. Moharam, T. K. Gaylord, D. A. Pommet, and E. B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  27. D. Lombardo, P. Shah, P. Guo, and A. Sarangan, “Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns,” Proc. SPIE 9777, 97771N (2016).
  28. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34(14), 2421–2429 (1995).
    [Crossref] [PubMed]
  29. H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
    [Crossref]
  30. B. Cowan, “Optical damage threshold of silicon for ultrafast infrared pulses,” Proc. SPIE 6720, 67201M (2007).

2017 (1)

2016 (5)

C. Wan, J. Chen, X. Tang, and Q. Zhan, “Experimental demonstration of a highly efficient fan-out polarization grating,” Sci. Rep. 6(1), 39626 (2016).
[Crossref] [PubMed]

M. W. Kudenov, M. Miskiewicz, N. Sanders, and M. J. Escuti, “Achromatic Wollaston prism beam splitter using polarization gratings,” Opt. Lett. 41(19), 4461–4463 (2016).
[Crossref] [PubMed]

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
[Crossref]

D. Lombardo, P. Shah, P. Guo, and A. Sarangan, “Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns,” Proc. SPIE 9777, 97771N (2016).

2015 (1)

2014 (1)

2012 (1)

C. Wan and J. R. Leger, “Experimental measurements of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 48(8), 1045–1051 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

M. Khajavikhan and J. R. Leger, “Modal analysis of path length sensitivity in superposition architectures for coherent laser beam combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
[Crossref]

2008 (1)

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

2007 (1)

B. Cowan, “Optical damage threshold of silicon for ultrafast infrared pulses,” Proc. SPIE 6720, 67201M (2007).

2006 (1)

2005 (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

2004 (1)

2002 (2)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

1995 (4)

1992 (1)

1990 (1)

1989 (1)

U. Krackhardt and N. Streibl, “Design of Dammann-gratings for array generation,” Opt. Commun. 74(1–2), 31–36 (1989).
[Crossref]

1984 (1)

M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984).
[Crossref]

1981 (1)

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications. Part i. Coherent pencils,” Proc. Indian Acad. Sci. A 44(6), 247–262 (1956).

Aieta, F.

Alberucci, A.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

Asghari, M.

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Assanto, G.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

Bansropun, S.

Berry, M.

M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984).
[Crossref]

Biener, G.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Bloom, G.

Bomzon, Z.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Capasso, F.

Carras, M.

Chen, J.

C. Wan, J. Chen, X. Tang, and Q. Zhan, “Experimental demonstration of a highly efficient fan-out polarization grating,” Sci. Rep. 6(1), 39626 (2016).
[Crossref] [PubMed]

Cowan, B.

B. Cowan, “Optical damage threshold of silicon for ultrafast infrared pulses,” Proc. SPIE 6720, 67201M (2007).

Day, I.

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

de Rossi, S.

Devlin, R.

Drake, J.

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Emaury, F.

Escuti, M. J.

Fainman, Y.

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Gaylord, T. K.

Genevet, P.

Georges, P.

Gorodetski, Y.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Grann, E. B.

Guo, P.

D. Lombardo, P. Shah, P. Guo, and A. Sarangan, “Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns,” Proc. SPIE 9777, 97771N (2016).

Harpin, A.

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Hasman, E.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

He, B.

Hu, M.

Jahns, J.

Jisha, C. P.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

Khajavikhan, M.

M. Khajavikhan and J. R. Leger, “Modal analysis of path length sensitivity in superposition architectures for coherent laser beam combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
[Crossref]

Khorasaninejad, M.

Kim, H. C.

Kim, J.

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

Kleiner, V.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Krackhardt, U.

U. Krackhardt, J. N. Mait, and N. Streibl, “Upper bound on the diffraction efficiency of phase-only fanout elements,” Appl. Opt. 31(1), 27–37 (1992).
[Crossref] [PubMed]

U. Krackhardt and N. Streibl, “Design of Dammann-gratings for array generation,” Opt. Commun. 74(1–2), 31–36 (1989).
[Crossref]

Kudenov, M. W.

Lallier, E.

Larat, C.

Lee-Bouhours, M. S.

Leger, J. R.

C. Wan and J. R. Leger, “Experimental measurements of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 48(8), 1045–1051 (2012).
[Crossref]

C. Wan, B. Tiffany, and J. R. Leger, “Analysis of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 47(6), 770–776 (2011).
[Crossref]

M. Khajavikhan and J. R. Leger, “Modal analysis of path length sensitivity in superposition architectures for coherent laser beam combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
[Crossref]

Lehoucq, G.

Levy, U.

Li, Y.

Liang, T.

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Liu, C.

Liu, H.

Liu, L.

Loiseaux, B.

Lombardo, D.

D. Lombardo, P. Shah, P. Guo, and A. Sarangan, “Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns,” Proc. SPIE 9777, 97771N (2016).

Lou, Q.

Lucas-Leclin, G.

Mait, J. N.

Marcadet, X.

Marrucci, L.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

Mercier, R.

Miskiewicz, M.

Miskiewicz, M. N.

Moharam, M. G.

Niv, A.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Oh, C.

Pabœuf, D.

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications. Part i. Coherent pencils,” Proc. Indian Acad. Sci. A 44(6), 247–262 (1956).

Piccirillo, B.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

Pommet, D. A.

Qi, Y.

Richter, I.

Roberts, S.

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Roux, F. S.

Sanders, N.

Santamato, E.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

Sarangan, A.

D. Lombardo, P. Shah, P. Guo, and A. Sarangan, “Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns,” Proc. SPIE 9777, 97771N (2016).

Shah, P.

D. Lombardo, P. Shah, P. Guo, and A. Sarangan, “Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns,” Proc. SPIE 9777, 97771N (2016).

Slussarenko, S.

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

Streibl, N.

U. Krackhardt, J. N. Mait, and N. Streibl, “Upper bound on the diffraction efficiency of phase-only fanout elements,” Appl. Opt. 31(1), 27–37 (1992).
[Crossref] [PubMed]

U. Krackhardt and N. Streibl, “Design of Dammann-gratings for array generation,” Opt. Commun. 74(1–2), 31–36 (1989).
[Crossref]

Sun, P. C.

Tang, X.

C. Wan, J. Chen, X. Tang, and Q. Zhan, “Experimental demonstration of a highly efficient fan-out polarization grating,” Sci. Rep. 6(1), 39626 (2016).
[Crossref] [PubMed]

Tiffany, B.

C. Wan, B. Tiffany, and J. R. Leger, “Analysis of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 47(6), 770–776 (2011).
[Crossref]

Tsai, C. H.

Tsang, H.

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Walker, S. J.

Wan, C.

C. Wan, J. Chen, X. Tang, and Q. Zhan, “Experimental demonstration of a highly efficient fan-out polarization grating,” Sci. Rep. 6(1), 39626 (2016).
[Crossref] [PubMed]

C. Wan and J. R. Leger, “Experimental measurements of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 48(8), 1045–1051 (2012).
[Crossref]

C. Wan, B. Tiffany, and J. R. Leger, “Analysis of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 47(6), 770–776 (2011).
[Crossref]

Wei, Y.

Wong, C.

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Xu, F.

Yang, Y.

Zhan, Q.

C. Wan, J. Chen, X. Tang, and Q. Zhan, “Experimental demonstration of a highly efficient fan-out polarization grating,” Sci. Rep. 6(1), 39626 (2016).
[Crossref] [PubMed]

Zheng, Y.

Zhou, C.

Zhou, J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Wan, B. Tiffany, and J. R. Leger, “Analysis of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 47(6), 770–776 (2011).
[Crossref]

C. Wan and J. R. Leger, “Experimental measurements of path length sensitivity in coherent beam combining by spatial filtering,” IEEE J. Quantum Electron. 48(8), 1045–1051 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Khajavikhan and J. R. Leger, “Modal analysis of path length sensitivity in superposition architectures for coherent laser beam combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
[Crossref]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Nat. Photonics (1)

S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, “Guiding light via geometric phases,” Nat. Photonics 10(9), 571–575 (2016).

Opt. Commun. (2)

U. Krackhardt and N. Streibl, “Design of Dammann-gratings for array generation,” Opt. Commun. 74(1–2), 31–36 (1989).
[Crossref]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Photonics News (1)

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
[Crossref]

Optica (2)

Phys. Rev. Lett. (1)

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Proc. Indian Acad. Sci. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications. Part i. Coherent pencils,” Proc. Indian Acad. Sci. A 44(6), 247–262 (1956).

Proc. R. Soc. Lond. A (1)

M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984).
[Crossref]

Proc. SPIE (2)

D. Lombardo, P. Shah, P. Guo, and A. Sarangan, “Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns,” Proc. SPIE 9777, 97771N (2016).

B. Cowan, “Optical damage threshold of silicon for ultrafast infrared pulses,” Proc. SPIE 6720, 67201M (2007).

Sci. Rep. (1)

C. Wan, J. Chen, X. Tang, and Q. Zhan, “Experimental demonstration of a highly efficient fan-out polarization grating,” Sci. Rep. 6(1), 39626 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The phase profile of a 1-by-5 fan-out grating (one period). (b) The binary form birefringence structures to realize the phase profile in (a).
Fig. 2
Fig. 2 Illustration of the deep-UV interference lithography system.
Fig. 3
Fig. 3 Schematic of the geometric-phase polarization fan-out grating fabrication process. Green layer: SiO2. Brown layer: Si.
Fig. 4
Fig. 4 Typical SEM images of the fabricated geometric-phase fan-out grating.
Fig. 5
Fig. 5 Schematic of the experimental setup for grating characterization. LHCP: left-handed circular polarization. QWP: quarter-wave plate.
Fig. 6
Fig. 6 The far-field intensity distribution captured by an infrared camera. The incident beam is split into five individual beams of equal intensity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin 2 ( Γ 2 ) = sin 2 ( 65.9 669 * π 2 ) = 2.38 % .

Metrics